Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Digit Imaging ; 34(3): 554-571, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33791909

RESUMEN

Coronary computed tomography angiography (CCTA) evaluation of chest pain patients in an emergency department (ED) is considered appropriate. While a "negative" CCTA interpretation supports direct patient discharge from an ED, labor-intensive analyses are required, with accuracy in jeopardy from distractions. We describe the development of an artificial intelligence (AI) algorithm and workflow for assisting qualified interpreting physicians in CCTA screening for total absence of coronary atherosclerosis. The two-phase approach consisted of (1) phase 1-development and preliminary testing of an algorithm for vessel-centerline extraction classification in a balanced study population (n = 500 with 50% disease prevalence) derived by retrospective random case selection, and (2) phase 2-simulated clinical Trialing of developed algorithm on a per-case (entire coronary artery tree) basis in a more "real-world" study population (n = 100 with 28% disease prevalence) from an ED chest pain series. This allowed pre-deployment evaluation of the AI-based CCTA screening application which provides vessel-by-vessel graphic display of algorithm inference results integrated into a clinically capable viewer. Algorithm performance evaluation used area under the receiver operating characteristic curve (AUC-ROC); confusion matrices reflected ground truth vs AI determinations. The vessel-based algorithm demonstrated strong performance with AUC-ROC = 0.96. In both phase 1 and phase 2, independent of disease prevalence differences, negative predictive values at the case level were very high at 95%. The rate of completion of the algorithm workflow process (96% with inference results in 55-80 s) in phase 2 depended on adequate image quality. There is potential for this AI application to assist in CCTA interpretation to help extricate atherosclerosis from chest pain presentations.


Asunto(s)
Enfermedad de la Arteria Coronaria , Inteligencia Artificial , Dolor en el Pecho/diagnóstico por imagen , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Servicio de Urgencia en Hospital , Humanos , Estudios Retrospectivos
2.
Comput Biol Med ; 159: 106901, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37068317

RESUMEN

BACKGROUND AND PURPOSE: A medical AI system's generalizability describes the continuity of its performance acquired from varying geographic, historical, and methodologic settings. Previous literature on this topic has mostly focused on "how" to achieve high generalizability (e.g., via larger datasets, transfer learning, data augmentation, model regularization schemes), with limited success. Instead, we aim to understand "when" the generalizability is achieved: Our study presents a medical AI system that could estimate its generalizability status for unseen data on-the-fly. MATERIALS AND METHODS: We introduce a latent space mapping (LSM) approach utilizing Fréchet distance loss to force the underlying training data distribution into a multivariate normal distribution. During the deployment, a given test data's LSM distribution is processed to detect its deviation from the forced distribution; hence, the AI system could predict its generalizability status for any previously unseen data set. If low model generalizability is detected, then the user is informed by a warning message integrated into a sample deployment workflow. While the approach is applicable for most classification deep neural networks (DNNs), we demonstrate its application to a brain metastases (BM) detector for T1-weighted contrast-enhanced (T1c) 3D MRI. The BM detection model was trained using 175 T1c studies acquired internally (from the authors' institution) and tested using (1) 42 internally acquired exams and (2) 72 externally acquired exams from the publicly distributed Brain Mets dataset provided by the Stanford University School of Medicine. Generalizability scores, false positive (FP) rates, and sensitivities of the BM detector were computed for the test datasets. RESULTS AND CONCLUSION: The model predicted its generalizability to be low for 31% of the testing data (i.e., two of the internally and 33 of the externally acquired exams), where it produced (1) ∼13.5 false positives (FPs) at 76.1% BM detection sensitivity for the low and (2) ∼10.5 FPs at 89.2% BM detection sensitivity for the high generalizability groups respectively. These results suggest that the proposed formulation enables a model to predict its generalizability for unseen data.


Asunto(s)
Neoplasias Encefálicas , Diagnóstico por Computador , Humanos , Diagnóstico por Computador/métodos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario
3.
Diagnostics (Basel) ; 13(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37627929

RESUMEN

There is an expanding body of literature that describes the application of deep learning and other machine learning and artificial intelligence methods with potential relevance to neuroradiology practice. In this article, we performed a literature review to identify recent developments on the topics of artificial intelligence in neuroradiology, with particular emphasis on large datasets and large-scale algorithm assessments, such as those used in imaging AI competition challenges. Numerous applications relevant to ischemic stroke, intracranial hemorrhage, brain tumors, demyelinating disease, and neurodegenerative/neurocognitive disorders were discussed. The potential applications of these methods to spinal fractures, scoliosis grading, head and neck oncology, and vascular imaging were also reviewed. The AI applications examined perform a variety of tasks, including localization, segmentation, longitudinal monitoring, diagnostic classification, and prognostication. While research on this topic is ongoing, several applications have been cleared for clinical use and have the potential to augment the accuracy or efficiency of neuroradiologists.

4.
Comput Med Imaging Graph ; 98: 102059, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35395606

RESUMEN

Early detection of brain metastases (BM) is one of the determining factors for the successful treatment of patients with cancer; however, the accurate detection of small BM lesions (< 15 mm) remains a challenging task. We previously described a framework for the detection of small BM in single-sequence gadolinium-enhanced T1-weighted 3D MRI datasets. It combined classical image processing (IP) with a dedicated convolutional neural network, taking approximately 30 s to process each dataset due to computation-intensive IP stages. To overcome the speed limitation, this study aims to reformulate the framework via an augmented pair of CNNs (eliminating the IP) to reduce the processing times while preserving the BM detection performance. Our previous implementation of the BM detection algorithm utilized Laplacian of Gaussians (LoG) for the candidate selection portion of the solution. In this study, we introduce a novel BM candidate detection CNN (cdCNN) to replace this classical IP stage. The network is formulated to have (1) a similar receptive field as the LoG method, and (2) a bias for the detection of BM lesion loci. The proposed CNN is later augmented with a classification CNN to perform the BM detection task. The cdCNN achieved 97.4% BM detection sensitivity when producing 60 K candidates per 3D MRI dataset, while the LoG achieved 96.5% detection sensitivity with 73 K candidates. The augmented BM detection framework generated on average 9.20 false-positive BM detections per patient for 90% sensitivity, which is comparable with our previous results. However, it processes each 3D data in 1.9 s, presenting a 93.5% reduction in the computation time.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación
5.
Tomography ; 8(4): 1791-1803, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35894016

RESUMEN

The emergence of the COVID-19 pandemic over a relatively brief interval illustrates the need for rapid data-driven approaches to facilitate clinical decision making. We examined a machine learning process to predict inpatient mortality among COVID-19 patients using clinical and chest radiographic data. Modeling was performed with a de-identified dataset of encounters prior to widespread vaccine availability. Non-imaging predictors included demographics, pre-admission clinical history, and past medical history variables. Imaging features were extracted from chest radiographs by applying a deep convolutional neural network with transfer learning. A multi-layer perceptron combining 64 deep learning features from chest radiographs with 98 patient clinical features was trained to predict mortality. The Local Interpretable Model-Agnostic Explanations (LIME) method was used to explain model predictions. Non-imaging data alone predicted mortality with an ROC-AUC of 0.87 ± 0.03 (mean ± SD), while the addition of imaging data improved prediction slightly (ROC-AUC: 0.91 ± 0.02). The application of LIME to the combined imaging and clinical model found HbA1c values to contribute the most to model prediction (17.1 ± 1.7%), while imaging contributed 8.8 ± 2.8%. Age, gender, and BMI contributed 8.7%, 8.2%, and 7.1%, respectively. Our findings demonstrate a viable explainable AI approach to quantify the contributions of imaging and clinical data to COVID mortality predictions.


Asunto(s)
COVID-19 , Aprendizaje Profundo , COVID-19/diagnóstico por imagen , Humanos , Pacientes Internos , Pandemias , Radiografía
6.
Diagnostics (Basel) ; 12(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36010373

RESUMEN

The detection of brain metastases (BM) in their early stages could have a positive impact on the outcome of cancer patients. The authors previously developed a framework for detecting small BM (with diameters of <15 mm) in T1-weighted contrast-enhanced 3D magnetic resonance images (T1c). This study aimed to advance the framework with a noisy-student-based self-training strategy to use a large corpus of unlabeled T1c data. Accordingly, a sensitivity-based noisy-student learning approach was formulated to provide high BM detection sensitivity with a reduced count of false positives. This paper (1) proposes student/teacher convolutional neural network architectures, (2) presents data and model noising mechanisms, and (3) introduces a novel pseudo-labeling strategy factoring in the sensitivity constraint. The evaluation was performed using 217 labeled and 1247 unlabeled exams via two-fold cross-validation. The framework utilizing only the labeled exams produced 9.23 false positives for 90% BM detection sensitivity, whereas the one using the introduced learning strategy led to ~9% reduction in false detections (i.e., 8.44). Significant reductions in false positives (>10%) were also observed in reduced labeled data scenarios (using 50% and 75% of labeled data). The results suggest that the introduced strategy could be utilized in existing medical detection applications with access to unlabeled datasets to elevate their performances.

7.
J Med Imaging (Bellingham) ; 8(2): 024004, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33855104

RESUMEN

Purpose: Sharing medical images between institutions, or even inside the same institution, is restricted by various laws and regulations; research projects requiring large datasets may suffer as a result. These limitations might be addressed by an abundant supply of synthetic data that (1) are representative (i.e., the synthetic data could produce comparable research results as the original data) and (2) do not closely resemble the original images (i.e., patient privacy is protected). We introduce a framework that generates data with these requirements leveraging generative adversarial network (GAN) ensembles in a controlled fashion. Approach: To this end, an adaptive ensemble scaling strategy with the objective of representativeness is defined. A sampled Fréchet distance-based constraint was then created to eliminate poorly converged candidates. Finally, a mutual information-based validation metric was embedded into the framework to confirm there are visual differences between the original and the generated synthetic images. Results: The applicability of the solution is demonstrated with a case study for generating three-dimensional brain metastasis (BM) from T1-weighted contrast-enhanced MRI studies. A previously published BM detection system was reported to produce 9.12 false-positives at 90% detection sensitivity based on the original data. By using the synthetic data generated with the proposed framework, the system produced 9.53 false-positives at the same sensitivity level. Conclusions: Achieving comparable algorithm performance relying solely on synthetic data unveils a significant potential to eliminate/reduce patient privacy concerns when sharing data in medical imaging.

8.
J Med Imaging (Bellingham) ; 7(1): 016502, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32064302

RESUMEN

We present a roadmap for integrating artificial intelligence (AI)-based image analysis algorithms into existing radiology workflows such that (1) radiologists can significantly benefit from enhanced automation in various imaging tasks due to AI, and (2) radiologists' feedback is utilized to further improve the AI application. This is achieved by establishing three maturity levels where (1) research enables the visualization of AI-based results/annotations by radiologists without generating new patient records; (2) production allows the AI-based system to generate results stored in an institution's picture-archiving and communication system; and (3) feedback equips radiologists with tools for editing the AI inference results for periodic retraining of the deployed AI systems, thereby allowing continuous organic improvement of AI-based radiology-workflow solutions. A case study (i.e., detection of brain metastases with T1-weighted contrast-enhanced three-dimensional MRI) illustrates the deployment details of a particular AI-based application according to the aforementioned maturity levels. It is shown that the given AI application significantly improves with feedback coming from radiologists; the number of incorrectly detected brain metastases (false positives) decreases from 14.2 to 9.12 per patient with the number of subsequently annotated datasets increasing from 93 to 217 as a result of radiologist adjudication.

9.
IEEE J Biomed Health Inform ; 24(10): 2883-2893, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32203040

RESUMEN

Brain Metastases (BM) complicate 20-40% of cancer cases. BM lesions can present as punctate (1 mm) foci, requiring high-precision Magnetic Resonance Imaging (MRI) in order to prevent inadequate or delayed BM treatment. However, BM lesion detection remains challenging partly due to their structural similarities to normal structures (e.g., vasculature). We propose a BM-detection framework using a single-sequence gadolinium-enhanced T1-weighted 3D MRI dataset. The framework focuses on the detection of smaller (<15 mm) BM lesions and consists of: (1) candidate-selection stage, using Laplacian of Gaussian approach for highlighting parts of an MRI volume holding higher BM occurrence probabilities, and (2) detection stage that iteratively processes cropped region-of-interest volumes centered by candidates using a custom-built 3D convolutional neural network ("CropNet"). Data is augmented extensively during training via a pipeline consisting of random ga mma correction and elastic deformation stages; the framework thereby maintains its invariance for a plausible range of BM shape and intensity representations. This approach is tested using five-fold cross-validation on 217 datasets from 158 patients, with training and testing groups randomized per patient to eliminate learning bias. The BM database included lesions with a mean diameter of ∼5.4 mm and a mean volume of ∼160 mm3. For 90% BM-detection sensitivity, the framework produced on average 9.12 false-positive BM detections per patient (standard deviation of 3.49); for 85% sensitivity, the average number of false-positives declined to 5.85. Comparative analysis showed that the framework produces comparable BM-detection accuracy with the state-of-art approaches validated for significantly larger lesions.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Redes Neurales de la Computación , Algoritmos , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Aprendizaje Profundo , Humanos , Imagen por Resonancia Magnética/métodos , Sensibilidad y Especificidad
10.
Med Image Anal ; 13(5): 701-14, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19632885

RESUMEN

Efficiently obtaining a reliable coronary artery centerline from computed tomography angiography data is relevant in clinical practice. Whereas numerous methods have been presented for this purpose, up to now no standardized evaluation methodology has been published to reliably evaluate and compare the performance of the existing or newly developed coronary artery centerline extraction algorithms. This paper describes a standardized evaluation methodology and reference database for the quantitative evaluation of coronary artery centerline extraction algorithms. The contribution of this work is fourfold: (1) a method is described to create a consensus centerline with multiple observers, (2) well-defined measures are presented for the evaluation of coronary artery centerline extraction algorithms, (3) a database containing 32 cardiac CTA datasets with corresponding reference standard is described and made available, and (4) 13 coronary artery centerline extraction algorithms, implemented by different research groups, are quantitatively evaluated and compared. The presented evaluation framework is made available to the medical imaging community for benchmarking existing or newly developed coronary centerline extraction algorithms.


Asunto(s)
Algoritmos , Angiografía Coronaria/normas , Reconocimiento de Normas Patrones Automatizadas/normas , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/normas , Programas Informáticos/normas , Tomografía Computarizada por Rayos X/normas , Humanos , Países Bajos , Intensificación de Imagen Radiográfica/métodos , Intensificación de Imagen Radiográfica/normas , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Validación de Programas de Computación
11.
Med Image Comput Comput Assist Interv ; 8(Pt 2): 692-700, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16686020

RESUMEN

Cine-DEMR is a new cardiac imaging technique which combines aspects of Cine and Delayed Enhancement MR. Like Cine, it displays the heart beating over time allowing for the detection of motion abnormalities. Like DEMR, non-viable (dead) tissues appear with increased signal intensity (it has been shown that the extent of non-viable tissue in the left ventricle (LV) of the heart is a direct indicator of patient survival rate). We present a technique for tracking the myocardial borders in this modality and classifying myocardial pixels as viable or non-viable. Tracking is performed using an affine deformed template of borders manually drawn on the first phase of the series and refined using an ASM-like approach. Classification employs a Support Vector Machine trained on DEMR data. We applied our technique on 75 images culled from 5 patient data sets.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Cinemagnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Disfunción Ventricular Izquierda/diagnóstico , Inteligencia Artificial , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA