Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(6): e2216836120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36724260

RESUMEN

Kidney organoids generated from induced pluripotent stem cells (iPSC) have proven valuable for studies of kidney development, disease, and therapeutic screening. However, specific applications have been hampered by limited expansion capacity, immaturity, off-target cells, and inability to access the apical side. Here, we apply recently developed tubuloid protocols to purify and propagate kidney epithelium from d7+18 (post nephrogenesis) iPSC-derived organoids. The resulting 'iPSC organoid-derived (iPSCod)' tubuloids can be exponentially expanded for at least 2.5 mo, while retaining expression of important tubular transporters and segment-specific markers. This approach allows for selective propagation of the mature tubular epithelium, as immature cells, stroma, and undesirable off-target cells rapidly disappeared. iPSCod tubuloids provide easy apical access, which enabled functional evaluation and demonstration of essential secretion and electrolyte reabsorption processes. In conclusion, iPSCod tubuloids provide a different, complementary human kidney model that unlocks opportunities for functional characterization, disease modeling, and regenerative nephrology.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Riñón/metabolismo , Epitelio , Organoides/metabolismo , Túbulos Renales , Diferenciación Celular
2.
Am J Physiol Renal Physiol ; 320(6): F1080-F1092, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33969697

RESUMEN

A major pathway in hypertension pathogenesis involves direct activation of ANG II type 1 (AT1) receptors in the kidney, stimulating Na+ reabsorption. AT1 receptors in tubular epithelia control expression and stimulation of Na+ transporters and channels. Recently, we found reduced blood pressure and enhanced natriuresis in mice with cell-specific deletion of AT1 receptors in smooth muscle (SMKO mice). Although impaired vasoconstriction and preserved renal blood flow might contribute to exaggerated urinary Na+ excretion in SMKO mice, we considered whether alterations in Na+ transporter expression might also play a role; therefore, we carried out proteomic analysis of key Na+ transporters and associated proteins. Here, we show that levels of Na+-K+-2Cl- cotransporter isoform 2 (NKCC2) and Na+/H+ exchanger isoform 3 (NHE3) are reduced at baseline in SMKO mice, accompanied by attenuated natriuretic and diuretic responses to furosemide. During ANG II hypertension, we found widespread remodeling of transporter expression in wild-type mice with significant increases in the levels of total NaCl cotransporter, phosphorylated NaCl cotransporter (Ser71), and phosphorylated NKCC2, along with the cleaved, activated forms of the α- and γ-epithelial Na+ channel. However, the increases in α- and γ-epithelial Na+ channel with ANG II were substantially attenuated in SMKO mice. This was accompanied by a reduced natriuretic response to amiloride. Thus, enhanced urinary Na+ excretion observed after cell-specific deletion of AT1 receptors from smooth muscle cells is associated with altered Na+ transporter abundance across epithelia in multiple nephron segments. These findings suggest a system of vascular-epithelial in the kidney, modulating the expression of Na+ transporters and contributing to the regulation of pressure natriuresis.NEW & NOTEWORTHY The use of drugs to block the renin-angiotensin system to reduce blood pressure is common. However, the precise mechanism for how these medications control blood pressure is incompletely understood. Here, we show that mice lacking angiotensin receptors specifically in smooth muscle cells lead to alternation in tubular transporter amount and function. Thus, demonstrating the importance of vascular-tubular cross talk in the control of blood pressure.


Asunto(s)
Angiotensina II/farmacología , Células Epiteliales/metabolismo , Riñón/irrigación sanguínea , Miocitos del Músculo Liso/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Amilorida/farmacología , Animales , Bloqueadores del Canal de Sodio Epitelial/farmacología , Femenino , Furosemida/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes , Hipertensión/inducido químicamente , Proteínas Luminiscentes , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Receptor de Angiotensina Tipo 1/genética , Sodio/metabolismo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Proteína Fluorescente Roja
3.
Cell Rep ; 43(1): 113614, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38159278

RESUMEN

Organoid technology is rapidly gaining ground for studies on organ (patho)physiology. Tubuloids are long-term expanding organoids grown from adult kidney tissue or urine. The progenitor state of expanding tubuloids comes at the expense of differentiation. Here, we differentiate tubuloids to model the distal nephron and collecting ducts, essential functional parts of the kidney. Differentiation suppresses progenitor traits and upregulates genes required for function. A single-cell atlas reveals that differentiation predominantly generates thick ascending limb and principal cells. Differentiated human tubuloids express luminal NKCC2 and ENaC capable of diuretic-inhibitable electrolyte uptake and enable disease modeling as demonstrated by a lithium-induced tubulopathy model. Lithium causes hallmark AQP2 loss, induces proliferation, and upregulates inflammatory mediators, as seen in vivo. Lithium also suppresses electrolyte transport in multiple segments. In conclusion, this tubuloid model enables modeling of the human distal nephron and collecting duct in health and disease and provides opportunities to develop improved therapies.


Asunto(s)
Acuaporina 2 , Litio , Adulto , Humanos , Litio/farmacología , Nefronas , Riñón , Electrólitos , Organoides
4.
J Mol Med (Berl) ; 99(4): 477-487, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33034708

RESUMEN

The kidneys are essential organs that filter the blood, removing urinary waste while maintaining fluid and electrolyte homeostasis. Current conventional research models such as static cell cultures and animal models are insufficient to grasp the complex human in vivo situation or lack translational value. To accelerate kidney research, novel research tools are required. Recent developments have allowed the directed differentiation of induced pluripotent stem cells to generate kidney organoids. Kidney organoids resemble the human kidney in vitro and can be applied in regenerative medicine and as developmental, toxicity, and disease models. Although current studies have shown great promise, challenges remain including the immaturity, limited reproducibility, and lack of perfusable vascular and collecting duct systems. This review gives an overview of our current understanding of nephrogenesis that enabled the generation of kidney organoids. Next, the potential applications of kidney organoids are discussed followed by future perspectives. This review proposes that advancement in kidney organoid research will be facilitated through our increasing knowledge on nephrogenesis and combining promising techniques such as organ-on-a-chip models.


Asunto(s)
Riñón/citología , Organoides/citología , Investigación Biomédica Traslacional/tendencias , Animales , Diferenciación Celular , Linaje de la Célula , Técnicas de Reprogramación Celular , Predicción , Humanos , Células Madre Pluripotentes Inducidas/citología , Riñón/embriología , Túbulos Renales Colectores/embriología , Túbulos Renales Colectores/ultraestructura , Ratones , Modelos Animales , Neovascularización Fisiológica , Organogénesis , Organoides/irrigación sanguínea , Organoides/trasplante , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Investigación Biomédica Traslacional/métodos , Uréter/embriología , Uréter/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA