Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Sports Med ; 44(10): 704-710, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37429319

RESUMEN

Thyroid hormones play a crucial role in skeletal muscle development, suggesting that thyroid function may influence muscle mass and muscle strength, which are both fundamental health-related indicators of several age-related consequences. However, whether there is a relationship between thyroid hormones, muscle mass, and muscle strength in individuals without thyroid dysfunctions is still unknown. Therefore, this systematic review aims to investigate whether thyroid hormones are related to muscle mass and strength parameters in euthyroid individuals. Three databases were searched (PubMed, Scopus, Web of Science) up to February 14, 2022, for peer-reviewed papers published in English. The search results were conducted independently by two different reviewers. The review included 13 studies with a total of 241,044 participants. All studies were observational: twelve studies measured thyroid stimulating hormone, ten and thirteen studies measured free triiodothyronine and free thyroxine, four studies analyzed the thyroid hormone ratio. The assessment methods for muscle mass were computed tomography, dual-energy X-ray absorptiometry and bioimpedance analysis, whereas hand dynamometer for muscle strength. Low levels within the normal range of free triiodothyronine, high levels within the normal range of free thyroxine, and lower thyroid hormone ratio may contribute to a reduced muscle function, which seems more evident in older males.


Asunto(s)
Tiroxina , Triyodotironina , Masculino , Humanos , Anciano , Hormonas Tiroideas , Tirotropina , Músculos
2.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139211

RESUMEN

Gender-related methodology in biomedical sciences receives considerable attention, with numerous studies highlighting biological differences between cisgender males and females. These differences influence the clinical symptoms of various diseases and impact therapeutic approaches. In this in vitro study, we investigate the potential role of sex-chromosome-related dimorphism on steroidogenic enzymes, androgen receptor (AR) expression, and cellular translocation in primary human skeletal muscle cells before and after exposure to testosterone. We analyzed 46XY and 46XX cells for 17ß-hydroxysteroid dehydrogenase (17ß-HSD), 5α-reductase (5α-R2), aromatase (Cyp-19), and AR gene expression. We also compared AR expression and intracellular translocation after increasing exposure to testosterone. At baseline, we observed higher mRNA expression for 5α-R2 and AR in 46XY cells and higher Cyp-19 mRNA expression in 46XX cells. Following testosterone exposure, we observed an increase in AR expression and translocation in 46XX cells, even at the lowest dose of 0.5 nM, while significant changes in 46XY cells were observed only from 10 nM. Our in vitro results demonstrate that the diverse sex chromosome assets reflect important differences in muscle steroidogenesis. They support the concept that chromosomal disparities between males and females, even in vitro, lead to pivotal variations in cellular physiology and response. This understanding represents a crucial starting point in gender medicine, ensuring a precise approach in clinical practice, sports, and exercise settings and facilitating the translation of in vitro data to in vivo applicability.


Asunto(s)
Receptores Androgénicos , Testosterona , Masculino , Femenino , Humanos , Testosterona/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Caracteres Sexuales , Andrógenos/metabolismo , Oxidorreductasas/metabolismo , Colestenona 5 alfa-Reductasa/genética , Músculo Esquelético/metabolismo , Cromosomas Sexuales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
FASEB J ; 35(2): e21328, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33433932

RESUMEN

To date, there are limited and incomplete data on possible sex-based differences in fiber-types of skeletal muscle and their response to physical exercise. Adult healthy male and female mice completed a single bout of endurance exercise to examine the sex-based differences of the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), heat shock protein 60 (Hsp60), interleukin 6 (IL-6) expression, as well as the Myosin Heavy Chain (MHC) fiber-type distribution in soleus and extensor digitorum longus (EDL) muscles. Our results showed for the first time that in male soleus, a muscle rich of type IIa fibers, endurance exercise activates specifically genes involved in mitochondrial biogenesis such as PGC1 α1 isoform, Hsp60 and IL-6, whereas the expression of PGC1 α2 and α3 was significantly upregulated in EDL muscle, a fast-twitch skeletal muscle, independently from the gender. Moreover, we found that the acute response of different PGC1α isoforms was muscle and gender dependent. These findings add a new piece to the huge puzzle of muscle response to physical exercise. Given the importance of these genes in the physiological response of the muscle to exercise, we strongly believe that our data could support future research studies to personalize a specific and sex-based exercise training protocol.


Asunto(s)
Actividad Motora , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Chaperonina 60/genética , Chaperonina 60/metabolismo , Femenino , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores Sexuales
4.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232289

RESUMEN

A central feature of the skeletal muscle is its ability to regenerate through the activation, by environmental signals, of satellite cells. Once activated, these cells proliferate as myoblasts, and defects in this process profoundly affect the subsequent process of regeneration. High levels of reactive oxygen species such as hydrogen peroxide (H2O2) with the consequent formation of oxidized macromolecules increase myoblasts' cell death and strongly contribute to the loss of myoblast function. Recently, particular interest has turned towards the beneficial effects on muscle of the naturally occurring polyamine spermidine (Spd). In this work, we tested the hypothesis that Spd, upon oxidative challenge, would restore the compromised myoblasts' viability and redox status. The effects of Spd in combination with aminoguanidine (Spd-AG), an inhibitor of bovine serum amine oxidase, on murine C2C12 myoblasts treated with a mild dose of H2O2 were evaluated by analyzing: (i) myoblast viability and recovery from wound scratch; (ii) redox status and (iii) polyamine (PAs) metabolism. The treatment of C2C12 myoblasts with Spd-AG increased cell number and accelerated scratch wound closure, while H2O2 exposure caused redox status imbalance and cell death. The combined treatment with Spd-AG showed an antioxidant effect on C2C12 myoblasts, partially restoring cellular total antioxidant capacity, reducing the oxidized glutathione (GSH/GSSG) ratio and increasing cell viability through a reduction in cell death. Moreover, Spd-AG administration counteracted the induction of polyamine catabolic genes and PA content decreased due to H2O2 challenges. In conclusion, our data suggest that Spd treatment has a protective role in skeletal muscle cells by restoring redox balance and promoting recovery from wound scratches, thus making myoblasts able to better cope with an oxidative insult.


Asunto(s)
Peróxido de Hidrógeno , Espermidina , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Proliferación Celular , Disulfuro de Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Ratones , Mioblastos/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Poliaminas/metabolismo , Poliaminas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Espermidina/metabolismo , Espermidina/farmacología
5.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35743011

RESUMEN

Skeletal muscle is a tissue that has recently been recognized for its ability to produce androgens under physiological conditions. The steroidogenesis process is known to be negatively influenced by reactive oxygen species (ROS) in reproductive Leydig and ovary cells, while their effect on muscle steroidogenesis is still an unexplored field. Muscle cells are continuously exposed to ROS, resulting from both their metabolic activity and the surrounding environment. Interestingly, the regulation of signaling pathways, induced by mild ROS levels, plays an important role in muscle fiber adaptation to exercise, in a process that also elicits a significant modulation in the hormonal response. The aim of the present study was to investigate whether ROS could influence steroidogenesis in skeletal muscle cells by evaluating the release of testosterone (T) and dihydrotestosterone (DHT), as well as the evaluation of the relative expression of the key steroidogenic enzymes 5α-reductase, 3ß-hydroxysteroid dehydrogenase (HSD), 17ß-HSD, and aromatase. C2C12 mouse myotubes were exposed to a non-cytotoxic concentration of hydrogen peroxide (H2O2), a condition intended to reproduce, in vitro, one of the main stimuli linked to the process of homeostasis and adaptation induced by exercise in skeletal muscle. Moreover, the influence of tadalafil (TAD), a phosphodiesterase 5 inhibitor (PDE5i) originally used to treat erectile dysfunction but often misused among athletes as a "performance-enhancing" drug, was evaluated in a single treatment or in combination with H2O2. Our data showed that a mild hydrogen peroxide exposure induced the release of DHT, but not T, and modulated the expression of the enzymes involved in steroidogenesis, while TAD treatment significantly reduced the H2O2-induced DHT release. This study adds a new piece of information about the adaptive skeletal muscle cell response to an oxidative environment, revealing that hydrogen peroxide plays an important role in activating muscle steroidogenesis.


Asunto(s)
Dihidrotestosterona , Peróxido de Hidrógeno , Animales , Dihidrotestosterona/metabolismo , Dihidrotestosterona/farmacología , Femenino , Humanos , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Testosterona/metabolismo
6.
Molecules ; 27(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35164412

RESUMEN

HSPB5 or alpha B-crystallin (CRYAB), originally identified as lens protein, is one of the most widespread and represented of the human small heat shock proteins (sHSPs). It is greatly expressed in tissue with high rates of oxidative metabolism, such as skeletal and cardiac muscles, where HSPB5 dysfunction is associated with a plethora of human diseases. Since HSPB5 has a major role in protecting muscle tissues from the alterations of protein stability (i.e., microfilaments, microtubules, and intermediate filament components), it is not surprising that this sHSP is specifically modulated by exercise. Considering the robust content and the protective function of HSPB5 in striated muscle tissues, as well as its specific response to muscle contraction, it is then realistic to predict a specific role for exercise-induced modulation of HSPB5 in the prevention of muscle diseases caused by protein misfolding. After offering an overview of the current knowledge on HSPB5 structure and function in muscle, this review aims to introduce the reader to the capacity that different exercise modalities have to induce and/or activate HSPB5 to levels sufficient to confer protection, with the potential to prevent or delay skeletal and cardiac muscle disorders.


Asunto(s)
Ejercicio Físico , Cardiopatías/metabolismo , Enfermedades Musculares/metabolismo , Cadena B de alfa-Cristalina/metabolismo , Animales , Cardiopatías/patología , Cardiopatías/prevención & control , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/patología , Enfermedades Musculares/prevención & control , Miocardio/metabolismo , Miocardio/patología , Factores Protectores
7.
Molecules ; 26(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34443628

RESUMEN

Moringa oleifera is a multi-purpose herbal plant with numerous health benefits. In skeletal muscle cells, Moringa oleifera leaf extract (MOLE) acts by increasing the oxidative metabolism through the SIRT1-PPARα pathway. SIRT1, besides being a critical energy sensor, is involved in the activation related to redox homeostasis of transcription factors such as the nuclear factor erythroid 2-related factor (Nrf2). The aim of the present study was to evaluate in vitro the capacity of MOLE to influence the redox status in C2C12 myotubes through the modulation of the total antioxidant capacity (TAC), glutathione levels, Nrf2 and its target gene heme oxygenase-1 (HO-1) expression, as well as enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and transferase (GST). Moreover, the impact of MOLE supplementation on lipid peroxidation and oxidative damage (i.e., TBARS and protein carbonyls) was evaluated. Our results highlight for the first time that MOLE increased not only Nrf2 and HO-1 protein levels in a dose-dependent manner, but also improved glutathione redox homeostasis and the enzyme activities of CAT, SOD, GPx and GST. Therefore, it is intriguing to speculate that MOLE supplementation could represent a valuable nutrition for the health of skeletal muscles.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Moringa oleifera/química , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción/efectos de los fármacos , Extractos Vegetales/farmacología , Hojas de la Planta/química , Regulación hacia Arriba/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Línea Celular , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Homeostasis/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Estrés Oxidativo/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Factores de Transcripción/metabolismo
8.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365773

RESUMEN

Oxidative stress linked to vascular damage plays an important role in the pathogenesis of systemic sclerosis (SSc). Indeed, vascular damage at nailfold capillaroscopy in patients with Raynaud's Phenomenon (RP) is a major risk factor for the development of SSc together with the presence of specific autoantiobodies. Here, we investigated the effects of the phosphodiesterase type 5 inhibitor (PDE5i) sildenafil, currently used in the management of RP, in modulating the proinflammatory response of dermal fibroblasts to oxidative stress in vitro. Human fibroblasts isolated from SSc patients and healthy controls were exposed to exogenous reactive oxygen species (ROS) (100 µM H2O2), in the presence or absence of sildenafil (1 µM). Treatment with sildenafil significantly reduced dermal fibroblast gene expression and cellular release of IL-6, known to play a central role in the pathogenesis of tissue damage in SSc and IL-8, directly induced by ROS. This reduction was associated with suppression of STAT3-, ERK-, NF-κB-, and PKB/AKT-dependent pathways. Our findings support the notion that the employment of PDE5i in the management of RP may be explored for its efficacy in modulating the oxidative stress-induced proinflammatory activation of dermal fibroblasts in vivo and may ultimately aid in the prevention of tissue damage caused by SSc.


Asunto(s)
Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Interleucina-6/genética , Interleucina-8/genética , Inhibidores de Fosfodiesterasa 5/farmacología , Especies Reactivas de Oxígeno/metabolismo , Citrato de Sildenafil/farmacología , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Estrés Oxidativo/efectos de los fármacos , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/metabolismo , Transcripción Genética
9.
Chin J Physiol ; 62(6): 261-266, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31793462

RESUMEN

Cardiovascular disease prevails with age which varies according to sex. Telomere length plays an important role in aging. Despite the great benefits of high-intensity interval training (HIIT), the acute responses to HIIT with different intervals have not been elucidated in different sexes. This study was conducted to investigate the sex-dependent responses of telomerase enzyme activity, total oxidant status (TOS), total antioxidant capacity (TAC), and the ratio of TAC/TOS to short- and long-term high-intensity interval exercise (HIIE) in cardiac muscle of male and female rats. Forty adult Wistar rats were randomly allocated to six groups: male and female HIIE with short-term intervals (MHIIESh and FHIIESh, respectively), male and female HIIE with long-term intervals (MHIIEL and FHIIEL, respectively), and controls groups. Telomerase activity, TAC, and TOS levels were examined immediately after exercise in the cardiac muscle. The level of telomerase enzyme activity, TOS level, and the ratio of TAC/TOS did not change after HIIE with short-term interval and HIIE with long-term interval (HIIEL) in male and female rats (P = 0.52, 0.69, and 0.08, respectively). There was a statistically significant decrease in the TAC level in the MHIIESh group (P = 0.04). Furthermore, a significant decrease was observed in the HIIEL in both male and female rats (P = 0.03 and 0.04, respectively). Acute exposure to HIIE with short- and long-term intervals would not result in a significant change in some indicators of biological aging. However, due to gender-specific biological differences, further studies will provide evidence regarding the roles of HIIE at different times of intervals, which contribute to aging prevention.


Asunto(s)
Caracteres Sexuales , Envejecimiento , Animales , Antioxidantes , Femenino , Masculino , Miocardio , Oxidantes , Ratas , Ratas Wistar , Telomerasa
10.
Res Sports Med ; 27(2): 147-165, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30596287

RESUMEN

Supplementation with antioxidants received interest as suitable tool for preventing or reducing exercise-related oxidative stress possibly leading to improvement of sport performance in athletes. To date, it is difficult to reach a conclusion on the relevance of antioxidants supplementation in athletes and/or well-trained people. The general picture that emerges from the available data indicates that antioxidants requirement can be covered by dosage equal or close to the recommended dietary allowance (RDA) provided by consumption of a balanced, well-diversified diet. Nevertheless, it remains open the possibility that in specific context, such as in sports characterized by high intensity and/or exhaustive regimes, supplementation with antioxidants could be appropriated to avoid or reduce the damaging effect of these type of exercise. This review will discuss the findings of a number of key studies on the advantages and/or disadvantages for athletes of using antioxidants supplementation, either individually or in combination.


Asunto(s)
Antioxidantes/administración & dosificación , Atletas , Rendimiento Atlético/fisiología , Ejercicio Físico/fisiología , Homeostasis/efectos de los fármacos , Músculo Esquelético/metabolismo , Estrés Oxidativo/efectos de los fármacos , Suplementos Dietéticos , Humanos , Oxidación-Reducción
11.
BMC Genomics ; 18(Suppl 8): 802, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29143608

RESUMEN

Epigenetic modification refers to heritable changes in gene function that cannot be explained by alterations in the DNA sequence. The current literature clearly demonstrates that the epigenetic response is highly dynamic and influenced by different biological and environmental factors such as aging, nutrient availability and physical exercise. As such, it is well accepted that physical activity and exercise can modulate gene expression through epigenetic alternations although the type and duration of exercise eliciting specific epigenetic effects that can result in health benefits and prevent chronic diseases remains to be determined. This review highlights the most significant findings from epigenetic studies involving physical activity/exercise interventions known to benefit chronic diseases such as metabolic syndrome, diabetes, cancer, cardiovascular and neurodegenerative diseases.


Asunto(s)
Enfermedad/genética , Epigénesis Genética , Ejercicio Físico , Medicina Preventiva , Humanos
12.
Free Radic Biol Med ; 213: 113-122, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38242245

RESUMEN

The evidence for physical activity (PA) as a major public health preventive approach and a potent medical therapy has increased exponentially in the last decades. The biomolecular mechanisms supporting the associations between PA and/or structured exercise training with health maintenance and disease prevention are not completely characterized. However, increasing evidence pointed out the role of epigenetic modifications in exercise adaptation and health-enhancing PA throughout life, DNA methylation being the most intensely studied epigenetic modification induced by acute and chronic exercise. The current data on the modulation of DNA methylation determined by physically active behavior or exercise interventions points out genes related to energy regulation, mitochondrial function, and biosynthesis, as well as muscle regeneration, calcium signaling pathways, and brain plasticity, all consistent with the known exercise-induced redox signaling and/or reactive oxygen species (ROS) unbalance. Thus, the main focus of this review is to discuss the role of ROS and redox-signaling on DNA methylation profile and its impact on exercise-induced health benefits in humans.


Asunto(s)
Metilación de ADN , Ejercicio Físico , Humanos , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción , Ejercicio Físico/fisiología , Epigénesis Genética
13.
Redox Biol ; 70: 103033, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38211440

RESUMEN

Most anticancer treatments act on oxidative-stress pathways by producing reactive oxygen species (ROS) to kill cancer cells, commonly resulting in consequential drug-induced systemic cytotoxicity. Physical activity (PA) has arisen as an integrative cancer therapy, having positive health effects, including in redox-homeostasis. Here, we investigated the impact of an online supervised PA program on promoter-specific DNA methylation, and corresponding gene expression/activity, in 3 antioxidants- (SOD1, SOD2, and CAT) and 3 breast cancer (BC)-related genes (BRCA1, L3MBTL1 and RASSF1A) in a population-based sample of women diagnosed with primary BC, undergoing medical treatment. We further examined mechanisms involved in methylating and demethylating pathways, predicted biological pathways and interactions of exercise-modulated molecules, and the functional relevance of modulated antioxidant markers on parameters related to aerobic capacity/endurance, physical fatigue and quality of life (QoL). PA maintained levels of SOD activity in blood plasma, and at the cellular level significantly increased SOD2 mRNA (≈+77 %), contrary to their depletion due to medical treatment. This change was inversely correlated with DNA methylation in SOD2 promoter (≈-20 %). Similarly, we found a significant effect of PA only on L3MBTL1 promoter methylation (≈-25 %), which was inversely correlated with its mRNA (≈+43 %). Finally, PA increased TET1 mRNA levels (≈+15 %) and decreased expression of DNMT3B mRNA (≈-28 %). Our results suggest that PA-modulated DNA methylation affects several signalling pathways/biological activities involved in the cellular oxidative stress response, chromatin organization/regulation, antioxidant activity and DNA/protein binding. These changes may positively impact clinical outcomes and improve the response to cancer treatment in post-surgery BC patients.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/cirugía , Calidad de Vida , Estudios Longitudinales , Metilación de ADN , Ejercicio Físico , Oxidación-Reducción , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Progresión de la Enfermedad , ARN Mensajero/metabolismo , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética
14.
Minerva Endocrinol (Torino) ; 48(2): 222-229, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35119252

RESUMEN

Beside its mechanical roles in controlling posture and locomotion, skeletal muscle system, the largest insulin and steroid hormones target tissue, plays a key role in influencing thermoregulation, secondary sexual characteristics, hormones metabolism, and glucose uptake and storage, as well as energetic metabolism. Indeed, in addition to insulin, several hormones influence the skeletal muscle metabolism/function and/or are influenced by skeletal muscles activity (i.e., physical exercise). Particularly, steroid hormones play a key role in modulating many biological processes in muscles, essential for overall muscle's function and homeostasis, both at rest and during all physical activities (i.e., physical exercise, muscular work). Phosphodiesterase type 5 (PDE5) is the enzyme engaged to hydrolyze cyclic guanosine monophosphate (cGMP) in inactive 5'-GMP form. Therefore, through the inhibition of this enzyme, the intracellular level of cGMP increases, and the cGMP-related cellular responses are prolonged. Different drugs inhibiting PDE5 (PDE5i) exist, and the commercially available PDE5i are sildenafil, vardenafil, tadalafil, and avanafil. The PDE5i tadalafil may influence cellular physiology and endocrine-metabolic pathways in skeletal muscles and exerts its functions both by activating the cell signaling linked to the insulin-related metabolic pathways and modulating the endocrine responses, protein catabolism and hormone-related anabolism/catabolism during and after physical exercise-related stress. Based on recent in-vivo and in-vitro findings, in this narrative review the aim was to summarize the available evidence describing the interactions between the PDE5i tadalafil and steroid hormones in skeletal muscle tissue and physical exercise adaptation, focusing our interest on their possible synergistic or competitive action(s) on muscle metabolism and function.


Asunto(s)
Insulinas , Inhibidores de Fosfodiesterasa 5 , Tadalafilo/farmacología , Tadalafilo/metabolismo , Inhibidores de Fosfodiesterasa 5/farmacología , Inhibidores de Fosfodiesterasa 5/metabolismo , Carbolinas/metabolismo , Carbolinas/farmacología , Músculo Esquelético/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/farmacología , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Hormonas/metabolismo , Hormonas/farmacología , Insulinas/metabolismo , Insulinas/farmacología
15.
Free Radic Biol Med ; 204: 266-275, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182793

RESUMEN

Considering the role of redox homeostasis in exercise-induced signaling and adaptation, this study focuses on the exercise training-related intercellular communication of redox status mediated by circulating extracellular vesicles (EVs). 19 healthy young males were divided into trained (TG, 7) and untrained (UG, 12) subjects based on their VO2MAX. The UG subjects were further randomly distributed in experimental (UGEX, N = 7) and control (UGCTRL, N = 5) groups. The steady state of plasma EVs in TG and UGEX have been characterized for total number and size, as well as cargo redox status (antioxidants, transcription factors, HSPs) before, 3 and 24 h after a single bout of aerobic exercise (30', 70% HRM). Plasma EVs from UGEX and UGCTRL have been further characterized after 24 h from the last session of a 5-day consecutive aerobic training or no training, respectively. No differences were detected in the EVs' size and distribution at baseline in TG and UGEX (p>0.05), while the EVs cargo of UGEX showed a significantly higher concentration of protein carbonyl, Catalase, SOD2, and HSF1 compared to TG (p<0.05). 5 days of consecutive aerobic training in UGEX did not determine major changes in the steady-state number and size of EVs. The post-training levels of protein carbonyl, HSF1, Catalase, and SOD2 in EVs cargo of UGEX resulted significantly lower compared with UGEX before training and UGCTRL, resembling the steady-state levels in circulating EVs of TG subjects. Altogether, these preliminary data indicate that individual aerobic capacity influences the redox status of circulating EVs, and that short-term aerobic training impacts the steady-state redox status of EVs. Taking this pilot study as a paradigm for physio-pathological stimuli impacting redox homeostasis, our results offer new insights into the utilization of circulating EVs as biomarkers of exercise efficacy and of early impairment of oxidative-stress related diseases.


Asunto(s)
Ejercicio Físico , Vesículas Extracelulares , Masculino , Humanos , Catalasa/metabolismo , Proyectos Piloto , Oxidación-Reducción , Vesículas Extracelulares/metabolismo
16.
Antioxidants (Basel) ; 12(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37238004

RESUMEN

Breast cancer (BC) is one of the most commonly diagnosed types of cancer in women. Oxidative stress may contribute to cancer etiology through several mechanisms. A large body of evidence indicates that physical activity (PA) has positive effects on different aspects of BC evolution, including mitigation of negative effects induced by medical treatment. With the aim to verify the capacity of PA to counteract negative effects of BC treatment on systemic redox homeostasis in postsurgery female BC patients, we have examined the modulation of circulating levels of oxidative stress and inflammation markers. Moreover, we evaluated the impacts on physical fitness and mental well-being by measuring functional parameters, body mass index, body composition, health-related quality of life (QoL), and fatigue. Our investigation revealed that PA was effective in maintaining plasma levels of superoxide dismutase (SOD) activity and tGSH, as well as peripheral blood mononuclear cells' (PBMCs) mRNA levels of SOD1 and heat-shock protein 27. Moreover, we found a significant decrease in plasma interleukin-6 (≈0.57 ± 0.23-fold change, p < 0.05) and increases in both interleukin-10 (≈1.15 ± 0.35-fold change, p < 0.05) and PBMCs' mRNA level of SOD2 (≈1.87 ± 0.36-fold change, p < 0.05). Finally, PA improves functional parameters (6 min walking test, ≈+6.50%, p < 0.01; Borg, ≈-58.18%, p < 0.01; sit-and-reach, ≈+250.00%, p < 0.01; scratch right, ≈-24.12%, and left, ≈-18.81%, p < 0.01) and body composition (free fat mass, ≈+2.80%, p < 0.05; fat mass, ≈-6.93%, p < 0.05) as well as the QoL (physical function, ≈+5.78%, p < 0.05) and fatigue (cognitive fatigue, ≈-60%, p < 0.05) parameters. These results suggest that a specific PA program not only is effective in improving functional and anthropometric parameters but may also activate cellular responses through a multitude of actions in postsurgery BC patients undergoing adjuvant therapy. These may include modulation of gene expression and protein activity and impacting several signaling pathways/biological activities involved in tumor-cell growth; metastasis; and inflammation, as well as moderating distress symptoms known to negatively affect QoL.

17.
Cancers (Basel) ; 14(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35565417

RESUMEN

The increase in breast cancer (BC) survival has determined a growing survivor population that seems to develop several comorbidities and, specifically, treatment-induced cardiovascular disease (CVD), especially those patients treated with anthracyclines. Indeed, it is known that these compounds act through the induction of supraphysiological production of reactive oxygen species (ROS), which appear to be central mediators of numerous direct and indirect cardiac adverse consequences. Evidence suggests that physical exercise (PE) practised before, during or after BC treatments could represent a viable non-pharmacological strategy as it increases heart tolerance against many cardiotoxic agents, and therefore improves several functional, subclinical, and clinical parameters. At molecular level, the cardioprotective effects are mainly associated with an exercise-induced increase of stress response proteins (HSP60 and HSP70) and antioxidant (SOD activity, GSH), as well as a decrease in lipid peroxidation, and pro-apoptotic proteins such as Bax, Bax-to-Bcl-2 ratio. Moreover, this protection can potentially be explained by a preservation of myosin heavy chain (MHC) isoform distribution. Despite this knowledge, it is not clear which type of exercise should be suggested in BC patient undergoing anthracycline treatment. This highlights the lack of special guidelines on how affected patients should be managed more efficiently. This review offers a general framework for the role of anthracyclines in the physio-pathological mechanisms of cardiotoxicity and the potential protective role of PE. Finally, potential exercise-based strategies are discussed on the basis of scientific findings.

18.
Antioxidants (Basel) ; 11(8)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35892637

RESUMEN

The imbalance between reactive oxygen species (ROS) production and antioxidant defense systems leads to macromolecule and tissue damage as a result of cellular oxidative stress. This phenomenon is considered a key factor in fatigue and muscle damage following chronic or high-intensity physical exercise. In the present study, the antioxidant effect of Moringa oleifera leaf extract (MOLE) was evaluated in C2C12 myotubes exposed to an elevated hydrogen peroxide (H2O2) insult. The capacity of the extract to influence the myotube redox status was evaluated through an analysis of the total antioxidant capacity (TAC), glutathione homeostasis (GSH and GSSG), total free thiols (TFT), and thioredoxin (Trx) activity, as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and transferase (GST). Moreover, the ability of MOLE to mitigate the stress-induced peroxidation of lipids and oxidative damage (TBARS and protein carbonyls) was also evaluated. Our data demonstrate that MOLE pre-treatment mitigates the highly stressful effects of H2O2 in myotubes (1 mM) by restoring the redox status (TFT, Trx, and GSH/GSSG ratio) and increasing the antioxidant enzymatic system (CAT, SOD, GPx, GST), thereby significantly reducing the TBARs and PrCAR levels. Our study provides evidence that MOLE supplementation has antioxidant potential, allowing myotubes better able to cope with an oxidative insult and, therefore, could represent a useful nutritional strategy for the preservation of muscle well-being.

19.
Artículo en Inglés | MEDLINE | ID: mdl-36011938

RESUMEN

Although exercise is associated with improved health in many medical conditions, little is known about the possible influences of physical activity (PA) habits pre- and post- a diagnosis of systemic sclerosis (SSc) on disease activity and progression. This cross-sectional study assessed, for the first time, self-reported pre- and post-diagnostic PA levels with the aim to verify if changes in these levels were correlated with demographic/anthropometric data (e.g., weight, height, gender, age, BMI), disease duration, diagnostic/clinical parameters (e.g., skin involvement, pulmonary hemodynamic/echocardiographic data, disease activity) related to disease activity and progression, and quality of life in a population-based sample of patients with SSc. Adult participants (n = 34, age 56.6 ± 13.3 years) with SSc (limited cutaneous SSc, lcSSc, n = 20; diffuse cutaneous SSc, dcSSc, n = 9; sine scleroderma SSc, n = 5) were enrolled at the Division of Rheumatology and Clinical Immunology of the Humanitas Research Hospital. All medical data were recorded during periodic clinical visits by a rheumatologist. Moreover, all subjects included in this study completed extensive questionnaires to evaluate their health-related quality of life (HRQOL), and others related to health-related physical activity performed before (PRE) and after (POST) the diagnosis of disease. The linear regression analysis has shown that either a high Sport_index or Leisure_index in the PRE-diagnostic period was correlated with lower disease duration in dcSSc patients. Physical load during sport activity and leisure time accounted for ~61.1% and ~52.6% of the individual variation in disease duration, respectively. In lcSSc patients, a high PRE value related to physical load during sporting activities was correlated with a low pulmonary artery systolic pressure (sPAP) and the POST value of the Work_index was positively correlated with the left ventricular ejection fraction (LVEF), and negatively with creatine kinase levels (CK). Interestingly, the univariate analysis showed that Work_index accounts for ~29.4% of the variance in LVEF. Our analysis clearly reinforces the concept that high levels of physical load may play a role in primary prevention-delaying the onset of the disease in those subjects with a family history of SSc-as well as in secondary prevention, improving SSc management through a positive impact on different clinical parameters of the disease. However, it remains a priority to identify a customized physical load in order to minimize the possible negative effects of PA.


Asunto(s)
Esclerodermia Difusa , Esclerodermia Sistémica , Adulto , Anciano , Estudios Transversales , Progresión de la Enfermedad , Ejercicio Físico , Humanos , Persona de Mediana Edad , Calidad de Vida , Esclerodermia Difusa/complicaciones , Esclerodermia Difusa/diagnóstico , Volumen Sistólico , Función Ventricular Izquierda
20.
Growth Factors ; 29(1): 21-35, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21222515

RESUMEN

Despite numerous studies on the role of growth hormone (GH), its function in skeletal muscle apoptosis secondary to various stimuli is poorly understood. In this study, we used rodent muscle cell lines to analyse cell growth and survival as well as the morphological and molecular markers of cell death in C2C12 and L6C5 myoblasts. These cells were treated either in the presence or absence of GH under serum starvation conditions or in the pro-apoptotic concentrations of hydrogen peroxide (H2O2). Although the cells were responsive to the presence of GH, we did not observe GH modulation of cell growth and survival. The presence of GH did not affect the cell death programme or the expression of apoptotic markers in basal conditions or under oxidative stress. In conclusion, this study indicated that GH "by itself" is not effective in modulating the intracellular pathways leading to cell survival or cell death induced by apoptotic stimuli.


Asunto(s)
Apoptosis/efectos de los fármacos , Hormona de Crecimiento Humana/farmacología , Músculo Esquelético/efectos de los fármacos , Mioblastos/efectos de los fármacos , Mioblastos/fisiología , Animales , División Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Mioblastos/citología , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA