Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Imaging Radiat Oncol ; 25: 100421, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36817981

RESUMEN

Background and purpose: Significant deviations between bladder dose planned (DP) and dose accumulated (DA) have been reported in patients receiving radiotherapy for prostate cancer. This study aimed to construct multivariate analysis (MVA) models to predict the risk of late genitourinary (GU) toxicity with clinical and DP or DA as dose-volume (DV) variables. Materials and methods: Bladder DA obtained from 150 patients were compared with DP. MVA models were built from significant clinical and DV variables (p < 0.05) at univariate analysis. Previously developed dose-based-region-of-interest (DB-ROI) metrics using expanded ring structures from the prostate were included. Goodness-of-fit test and calibration plots were generated to determine model performance. Internal validation was accomplished using Bootstrapping. Results: Intermediate-high DA (V30-65 Gy and DB-ROI-20-50 mm) for bladder increased compared to DP. However, at the very high dose region, DA (D0.003 cc, V75 Gy, and DB-ROI-5-10 mm) were significantly lower. In MVA, single variable models were generated with odds ratio (OR) < 1. DB-ROI-50 mm was predictive of Grade ≥ 1 GU toxicity for DA and DP (DA and DP; OR: 0.96, p: 0.04) and achieved an area under the receiver operating curve (AUC) of > 0.6. Prostate volume (OR: 0.87, p: 0.01) was significant in predicting Grade 2 GU toxicity with a high AUC of 0.81. Conclusions: Higher DA (V30-65 Gy) received by the bladder were not translated to higher late GU toxicity. DB-ROIs demonstrated higher predictive power than standard DV metrics in associating Grade ≥ 1 toxicity. Smaller prostate volumes have a minor protective effect on late Grade 2 GU toxicity.

2.
Front Oncol ; 13: 1241711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023170

RESUMEN

Background and purpose: This study aimed to investigate the feasibility of safe-dose escalation to dominant intraprostatic lesions (DILs) and assess the clinical impact using dose-volume (DV) and biological metrics in photon and proton therapy. Biological parameters defined as late grade ≥ 2 gastrointestinal (GI) and genitourinary (GU) derived from planned (D P) and accumulated dose (D A) were utilized. Materials and methods: In total, 10 patients with high-risk prostate cancer with multiparametric MRI-defined DILs were investigated. Each patient had two plans with a focal boost to the DILs using intensity-modulated proton therapy (IMPT) and volumetric-modulated arc therapy (VMAT). Plans were optimized to obtain DIL coverage while respecting the mandatory organ-at-risk constraints. For the planning evaluation, DV metrics, tumor control probability (TCP) for the DILs and whole prostate excluding the DILs (prostate-DILs), and normal tissue complication probability (NTCP) for the rectum and bladder were calculated. Wilcoxon signed-rank test was used for analyzing TCP and NTCP data. Results: IMPT achieved a higher Dmean for the DILs compared to VMAT (IMPT: 68.1 GyRBE vs. VMAT: 66.6 Gy, p < 0.05). Intermediate-high rectal and bladder doses were lower for IMPT (p < 0.05), while the high-dose region (V60 Gy) remained comparable. IMPT-TCP for prostate-DIL were higher compared to VMAT (IMPT: 86%; α/ß = 3, 94.3%; α/ß = 1.5 vs. VMAT: 84.7%; α/ß = 3, 93.9%; α/ß = 1.5, p < 0.05). Likewise, IMPT obtained a moderately higher DIL TCP (IMPT: 97%; α/ß = 3, 99.3%; α/ß = 1.5 vs. VMAT: 95.9%; α/ß = 3, 98.9%; α/ß = 1.5, p < 0.05). Rectal D A-NTCP displayed the highest GI toxicity risk at 5.6%, and IMPT has a lower GI toxicity risk compared to VMAT-predicted Quantec-NTCP (p < 0.05). Bladder D P-NTCP projected a higher GU toxicity than D A-NTCP, with VMAT having the highest risk (p < 0.05). Conclusion: Dose escalation using IMPT is able to achieve a high TCP for the DILs, with the lowest rectal and bladder DV doses at the intermediate-high-dose range. The reduction in physical dose was translated into a lower NTCP (p < 0.05) for the bladder, although rectal toxicity remained equivalent.

3.
Phys Imaging Radiat Oncol ; 23: 97-102, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35879938

RESUMEN

Background and purpose: Significant dose deviations have been reported between planned (DP) and accumulated (DA) dose in prostate radiotherapy. This study aimed to develop multivariate analysis (MVA) models associating Grade 1 and 2 gastrointestinal (GI) toxicity with clinical and DP or DA dosimetric variables separately. Materials and methods: Dose volume (DV) metrics were compared between DA and DP for 150 high-risk prostate cancer patients. MV models were generated from significant clinical and dosimetric variables (p < 0.05) at univariate level. Dose-based-region of interest (DB-ROI) metrics were included. Model performance was measured, and additional subgroup analysis were performed. Results: Rectal DA demonstrated a higher intermediate-high dose (V30-65 Gy and DB-ROI at 15-50 mm) compared to DP. Conversely, at the very high dose region, rectal DA (V75 Gy and DB-ROI at 5-10 mm) were significantly lower. In MVA, rectal DB-ROI at 10 mm was predictive for Grade ≥ 1 GI toxicity for DA and DP. Age, rectal DA for D0.03 cc, and rectal DP for DB-ROI 10 mm were predictors for Grade 2 GI toxicity. Subgroup analysis revealed that patients ≥ 72 years old and a rectal DA of ≥ 78.2 Gy were highly predictive of Grade 2 GI toxicity. Conclusions: The dosimetric impact of a higher dose rectal dose in DA due to volumetric changes was minimal and was not predictive of detrimental clinical toxicity apart from rectal D0.03 cc ≥ 78.2 Gy for Grade 2 GI toxicity. The use of the DB-ROI method can provide equivalent predictive power as the DV method in toxicity prediction.

4.
Med Dosim ; 47(1): 92-97, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34740517

RESUMEN

Inter-fraction organ variations cause deviations between planned and delivered doses in patients receiving radiotherapy for prostate cancer. This study compared planned (DP) vs accumulated doses (DA) obtained from daily cone-beam computed tomography (CBCT) scans in high-risk- prostate cancer with pelvic lymph nodes irradiation. An intensity-based deformable image registration algorithm used to estimate contours for DA was validated using geometrical agreement between radiation oncologist's and deformable image registration algorithm propagated contours. Spearman rank correlations (rs) between geometric measures and changes in organ volumes were evaluated for 20 cases. Dose-volume (DV) differences between DA and DP were compared (Wilcoxon rank test, p < 0.05). A novel region-of-interest (ROI) method was developed and mean doses were analyzed. Geometrical measures for the prostate and organ-at-risk contours were within clinically acceptable criteria. Inter-group mean (± SD) CBCT volumes for the rectum were larger compared to planning CT (pCT) (51.1 ± 11.3 cm3vs 46.6 ± 16.1 cm3), and were moderately correlated with variations in pCT volumes, rs = 0.663, p < 0.01. Mean rectum DV for DA was higher at V30-40 Gy and lower at V70-75 Gy, p < 0.05. Mean bladder CBCT volumes were smaller compared to pCT (198.8 ± 55 cm3vs 211.5 ± 89.1 cm3), and was moderately correlated with pCT volumes, rs = 0.789, p < 0.01. Bladder DA was higher at V30-65 Gy and lower at V70-75 Gy (p < 0.05). For the ROI method, rectum and bladder DA were lower at 5 to 10 mm (p < 0.01) as compared to DP, whilst bladder DA was higher than DP at 20 to 50 mm (p < 0.01). Generated DA demonstrated significant differences in organ-at-risk doses as compared to DP. A well-constructed workflow incorporating a ROI DV-extraction method has been validated in terms of efficiency and accuracy designed for seamless integration in the clinic to guide future plan adaptation.


Asunto(s)
Neoplasias de la Próstata , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada de Haz Cónico , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Recto/diagnóstico por imagen , Flujo de Trabajo
5.
Front Oncol ; 12: 1084311, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591496

RESUMEN

Background and purpose: Normal tissue complication probability (NTCP) parameters derived from traditional 3D plans may not be ideal in defining toxicity outcomes for modern radiotherapy techniques. This study aimed to derive parameters of the Lyman-Kutcher-Burman (LKB) NTCP model using prospectively scored clinical data for late gastrointestinal (GI) and genitourinary (GU) toxicities for high-risk prostate cancer patients treated using volumetric-modulated-arc-therapy (VMAT). Dose-volume-histograms (DVH) extracted from planned (DP) and accumulated dose (DA) were used. Material and methods: DP and DA obtained from the DVH of 150 prostate cancer patients with pelvic-lymph-nodes irradiation treated using VMAT were used to generate LKB-NTCP parameters using maximum likelihood estimations. Defined GI and GU toxicities were recorded up to 3-years post RT follow-up. Model performance was measured using Hosmer-Lemeshow goodness of fit test and the mean area under the receiver operating characteristics curve (AUC). Bootstrapping method was used for internal validation. Results: For mild-severe (Grade ≥1) GI toxicity, the model generated similar parameters based on DA and DP DVH data (DA-D50:71.6 Gy vs DP-D50:73.4; DA-m:0.17 vs DP-m:0.19 and DA/P-n 0.04). The 95% CI for DA-D50 was narrower and achieved an AUC of >0.6. For moderate-severe (Grade ≥2) GI toxicity, DA-D50 parameter was higher and had a narrower 95% CI (DA-D50:77.9 Gy, 95% CI:76.4-79.6 Gy vs DP-D50:74.6, 95% CI:69.1-85.4 Gy) with good model performance (AUC>0.7). For Grade ≥1 late GU toxicity, D50 and n parameters for DA and DP were similar (DA-D50: 58.8 Gy vs DP-D50: 59.5 Gy; DA-n: 0.21 vs DP-n: 0.19) with a low AUC of<0.6. For Grade ≥2 late GU toxicity, similar NTCP parameters were attained from DA and DP DVH data (DA-D50:81.7 Gy vs DP-D50:81.9 Gy; DA-n:0.12 vs DP-n:0.14) with an acceptable AUCs of >0.6. Conclusions: The achieved NTCP parameters using modern RT techniques and accounting for organ motion differs from QUANTEC reported parameters. DA-D50 of 77.9 Gy for GI and DA/DP-D50 of 81.7-81.9 Gy for GU demonstrated good predictability in determining the risk of Grade ≥2 toxicities especially for GI derived D50 and are recommended to incorporate as part of the DV planning constraints to guide dose escalation strategies while minimising the risk of toxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA