Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 193(12): 820, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34792670

RESUMEN

This paper assesses the long-term combined effects of land use (LU) and climate change on river hydrology and water scarcity of two rivers of the Western Ghats of India. The historical LU changes were studied for four decades (1988-2016) using the maximum likelihood algorithm and the long-term LU (2016-2075) was estimated using the Dyna-CLUE prediction model. Five General Circulation Models (GCMs) were utilized to assess the effects of climate change (CC) and the Soil and Water Assessment Tool (SWAT) model was used for hydrological modeling of the two river catchments. To characterize granular effects of LU and CC on regional hydrology, a scenario approach was adopted and three scenarios depicting near-future (2006-2040), mid-future (2041-2070), and far-future (2071-2100) based on climate were established. The present rate of LU change indicated a reduction in forest cover by 20% and an increase in urbanized areas by 9.5% between 1988 and 2016. It was estimated that forest cover in the catchments may be expected to halve compared to the present-day LU (55% in 2016 to 23% in 2075), along with large-scale conversion to agricultural lands (13.5% in 2016 to 49.5% in 2075). As a result of changes to LU and forecasted climate, it was found that rivers in the Western Ghats of India might face scarcity of fresh water in the next two decades until the year 2040. However, because of large-scale LU conversion toward the year 2050, streamflow in rivers might increase as high as 70.94% at certain times of the year. Although an increase in streamflow is perceived favorable, the streamflow changes during summer and winter may be expected to affect the cropping calendar and crop yield. The changes to streamflow were also linked to a 4.2% increase in ecologically sensitive wetlands of the Aghanashini river catchment.


Asunto(s)
Cambio Climático , Ríos , Monitoreo del Ambiente , Hidrología , India , Inseguridad Hídrica
2.
Environ Monit Assess ; 121(1-3): 233-44, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16758284

RESUMEN

The stem cuttings of the terrestrial, ornamental plant, Portulaca oleracea, grew well in distilled water by producing adventitious roots and leaves. However, when exposed to various concentrations of sulfate and nitrate salts of copper resulted in a suppression of root growth, increase in initiation time of roots and sprouts and decay of stem cuttings from the cut open end, decrease in number of leaves with an increase in concentration of copper in the growth medium. Accumulation of copper increased with increasing concentrations of both copper sulfate and copper nitrate. However, copper accumulation was greater in copper nitrate than in copper sulfate treatment. Hence, copper in the presence of nitrate is more toxic than in the presence of sulfate. The accumulation factors in all treatment concentrations were greater than 1, hence P. oleracea is a copper accumulator.


Asunto(s)
Sulfato de Cobre/toxicidad , Cobre/metabolismo , Nitratos/toxicidad , Tallos de la Planta/fisiología , Portulaca/efectos de los fármacos , Regeneración/efectos de los fármacos , Cobre/análisis , Cobre/toxicidad , Portulaca/química , Portulaca/metabolismo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA