Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Langmuir ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990344

RESUMEN

The size or the curvature of nanoparticles (NPs) plays an important role in regulating the composition of the protein corona. However, the molecular mechanisms of how curvature affects the interaction of NPs with serum proteins still remain elusive. In this study, we employ all-atom molecular dynamics simulations to investigate the interactions between two typical serum proteins and PEGylated Au NPs with three different surface curvatures (0, 0.1, and 0.5 nm-1, respectively). The results show that for proteins with a regular shape, the binding strength between the serum protein and Au NPs decreases with increasing curvature. For irregularly shaped proteins with noticeable grooves, the binding strength between the protein and Au NPs does not change obviously with increasing curvature in the cases of smaller curvature. However, as the curvature continues to increase, Au NPs may act as ligands firmly adsorbed in the protein grooves, significantly enhancing the binding strength. Overall, our findings suggest that the impact of NP curvature on protein adsorption may be nonmonotonic, which may provide useful guidelines for better design of functionalized NPs in biomedical applications.

2.
Langmuir ; 40(2): 1295-1304, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38173387

RESUMEN

The fluorinated decorations have recently been widely used in many biomedical applications. However, the potential mechanism of the fluorination effect on the cellular delivery of nanoparticles (NPs) still remains elusive. In this work, we systemically explore the penetration of a perfluoro-octanethiol-coated gold NP (PF-Au NP) and, for comparison, an octanethiol-coated gold NP (OT-Au NP) across lipid bilayers. We also investigated the effect of these two types of NPs on the properties of lipid bilayers. Our findings indicate that the lipid type and the surface tension of the lipid bilayer significantly impact the penetration capabilities of the fluorinated gold NP. By examining the distribution of ligands on the surface of the two types of NPs in water and during the penetration process, we unveil their distinct penetration characteristics. Specifically, the PF-Au NP exhibits amphiphobic behavior (both hydrophobic and lipophobic), while the OT-Au NP exhibits solely hydrophobic characteristics. Finally, we observe that the penetration capabilities can be increased by adjusting the degree of fluorination of the ligands on the NP surface. Overall, this study provides useful physical insights into the unique properties of the fluorinated decorations in NP permeation.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Membrana Dobles de Lípidos/química , Halogenación , Nanopartículas del Metal/química , Nanopartículas/química , Modelos Moleculares , Oro/química , Ligandos
3.
Phys Chem Chem Phys ; 26(18): 13751-13761, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38683175

RESUMEN

Understanding the dynamics of neurotransmitters is crucial for unraveling synaptic transmission mechanisms in neuroscience. In this study, we investigated the impact of terahertz (THz) waves on the aggregation of four common neurotransmitters through all-atom molecular dynamics (MD) simulations. The simulations revealed enhanced nicotine (NCT) aggregation under 11.05 and 21.44 THz, with a minimal effect at 42.55 THz. Structural analysis further indicated strengthened intermolecular interactions and weakened hydration effects under specific THz stimulation. In addition, enhanced aggregation was observed at stronger field strengths, particularly at 21.44 THz. Furthermore, similar investigations on epinephrine (EPI), 5-hydroxytryptamine (5-HT), and γ-aminobutyric acid (GABA) corroborated these findings. Notably, EPI showed increased aggregation at 19.05 THz, emphasizing the influence of vibrational modes on aggregation. However, 5-HT and GABA, with charged or hydrophilic functional groups, exhibited minimal aggregation under THz stimulation. The present study sheds some light on neurotransmitter responses to THz waves, offering implications for neuroscience and interdisciplinary applications.


Asunto(s)
Simulación de Dinámica Molecular , Neurotransmisores , Serotonina , Radiación Terahertz , Ácido gamma-Aminobutírico , Neurotransmisores/química , Ácido gamma-Aminobutírico/química , Serotonina/química , Serotonina/metabolismo , Nicotina/química , Epinefrina/química
4.
J Chem Phys ; 160(6)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38349628

RESUMEN

Biomolecular condensates formed by multicomponent phase separation play crucial roles in diverse cellular processes. Accurate assessment of individual-molecule contributions to condensate formation and precise characterization of their spatial organization within condensates are crucial for understanding the underlying mechanism of phase separation. Using molecular dynamics simulations and graph theoretical analysis, we demonstrated quantitatively the significant roles of cation-π and π-π interactions mediated by aromatic residues and arginine in the formation of condensates in polypeptide systems. Our findings reveal temperature and chain length-dependent alterations in condensate network parameters, such as the number of condensate network layers, and changes in aggregation and connectivity. Notably, we observe a transition between assortativity and disassortativity in the condensate network. Moreover, polypeptides W, Y, F, and R consistently promote condensate formation, while the contributions of other charged and two polar polypeptides (Q and N) to condensate formation depend on temperature and chain length. Furthermore, polyadenosine and polyguanosine can establish stable connections with aromatic and R polypeptides, resulting in the reduced involvement of K, E, D, Q, and N in phase separation. Overall, this study provides a distinctive, precise, and quantitative approach to characterize the multicomponent phase separation.

5.
Proteins ; 91(8): 1140-1151, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37086011

RESUMEN

The specific recognition of serum proteins by scavenger receptors is critical and fundamental in many biological processes. However, the underlying mechanism of scavenger receptor-serum protein interaction remains elusive. In this work, taking scavenger receptors class A1 (SR-A1) as an example, we systematically investigate its interaction with human serum albumin (HSA) at different states through a combination of molecular docking and all-atom molecular dynamics simulations. It is found that native HSA can moderately bind to collagen-like (CL) region or scavenger receptor cysteine-rich (SRCR) region, with both electrostatic (ELE) and van der Waals (VDW) interactions, playing important roles. After maleylation, the binding energy, particularly the ELE energy, between HSA and CL region is significantly enhanced, while the binding energy between HSA and SRCR region remains nearly unchanged. Additionally, we also observe that unfolding of the secondary structures in HSA leads to a larger contact surface area between denatured HSA and CL region, but has little impact on the HSA-SRCR region interaction. Therefore, similar to maleylated HSA, denatured HSA is also more likely to bind to the CL region of SR-A1.


Asunto(s)
Albúmina Sérica Humana , Humanos , Simulación del Acoplamiento Molecular , Sitios de Unión , Espectrometría de Fluorescencia , Termodinámica , Albúmina Sérica Humana/metabolismo , Receptores Depuradores/metabolismo , Unión Proteica , Dicroismo Circular
6.
Phys Chem Chem Phys ; 25(41): 28034-28042, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37846110

RESUMEN

Nanopore-based biomolecule detection has emerged as a promising and sought-after innovation, offering high throughput, rapidity, label-free analysis, and cost-effectiveness, with potential applications in personalized medicine. However, achieving efficient and tunable biomolecule capture into the nanopore remains a significant challenge. In this study, we employ all-atom molecular dynamics simulations to investigate the capture of double-stranded DNA (dsDNA) molecules into graphene nanopores with varying positive charges. We discover a non-monotonic relationship between the DNA capture rate and the charge of the graphene nanopore. Specifically, the capture rate initially decreases and then increases with an increase in nanopore charge. This behavior is primarily attributed to differences in the electrophoretic force, rather than the influence of electroosmosis or counterions. Furthermore, we also observe this non-monotonic trend in various ionic solutions, but not in ionless solutions. Our findings shed light on the design of novel DNA sequencing devices, offering valuable insights into enhancing biomolecule capture rates in nanopore-based sensing platforms.


Asunto(s)
Grafito , Nanoporos , ADN/análisis , Simulación de Dinámica Molecular , Electroforesis
7.
Langmuir ; 38(45): 13972-13982, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36318181

RESUMEN

The spread of coronavirus disease 2019 caused by SARS-CoV-2 and its variants has become a global health crisis. Although there were many attempts to use nanomaterials-based devices to fight against SARS-CoV-2, it still remains elusive as to how the nanomaterials interact with SARS-CoV-2 and affect its biofunctions. Here, taking the graphene nanosheet (GN) as the model nanomaterial, we investigate its interaction with the spike protein in both WT and Omicron by molecular simulations. In the closed state, the GN can insert into the region between the receptor binding domain (RBD) and the N-terminal domain (NTD) in both wild type (WT) and Omicron, which keeps the RBD in the down conformation. In the open state, the GN can hamper the binding of up RBD to ACE2 in WT, but it has little impact on up RBD and, even worse, stimulates the down-to-up transition of down RBDs in Omicron. Moreover, the GN can insert in the vicinity of the fusion peptide in both WT and Omicron and prevents the detachment of S1 from the whole spike protein. The present study reveals the effect of the SARS-CoV-2 variant on the nanomaterial-spike protein interaction, which informs prospective efforts to design functional nanomaterials against SARS-CoV-2.


Asunto(s)
COVID-19 , Grafito , Humanos , Enzima Convertidora de Angiotensina 2 , Peptidil-Dipeptidasa A/metabolismo , Estudios Prospectivos , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Nanoestructuras
8.
Phys Chem Chem Phys ; 24(23): 14339-14347, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35642694

RESUMEN

Protein-ligand interactions are crucial in many biochemical processes and biomedical applications, yet accurately calculating the binding free energy of the interactions still remains challenging. In this work, we systematically investigate the performance of a generic force field GFN-FF and some semi-empirical quantum mechanical (SQM) methods (GFNn, n = 0, 1, 2) in terms of the accuracy of the calculated binding free energy. It is found that the performance of the GFN-FF method is quite good in a neutral-ligand system since the Pearson correlation coefficient (rp) is 0.70 and the mean absolute error (MAE) is 5.49 kcal mol-1. However, it may fail in a charged-ligand system (the MAE is 18.98 kcal mol-1). Moreover, we also propose a cluster model (i.e., truncating the protein at a given cutoff) along with the SQM method in the GFN family. Importantly, the GFN2-xTB shows the best performance among the SQM methods (the MAE is 4.91 kcal mol-1 and 10.25 kcal mol-1 in the neutral-ligand and charged-ligand systems, respectively), much better than GFN-FF in the charged-ligand system. Notably, the computing cost of the GFN2-xTB in the appropriate cluster model is even lower than that of the GFN-FF (in the entire complex). The present study sheds some light on the potential power of the GFN family in the efficient calculation of the binding free energy in bio-systems.


Asunto(s)
Proteínas , Entropía , Ligandos , Unión Proteica , Termodinámica
9.
Langmuir ; 37(40): 11707-11715, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34570511

RESUMEN

The unconjugated bilirubin (BR) may penetrate through the cell membrane and cause a severe cytotoxicity. However, the molecular mechanism underlying the penetration of BR into the cell membrane is still largely unknown. In this work, we systematically investigate the interaction of BR and a lipid bilayer under different conditions by using all-atom molecular dynamics simulations. It is found that BR at the Z,Z conformation can easily enter into the interior of the lipid bilayer due to its hydrophobicity. However, when BR transforms from the Z,Z conformation to the E,E conformation (after the blue-light emission), its penetration ability is greatly reduced (especially at its ionized state). This study may offer useful physical insights into the effect of phototherapy on the penetration behavior and the cytotoxicity of the unconjugated BR.


Asunto(s)
Bilirrubina , Membrana Dobles de Lípidos , Membrana Celular , Conformación Molecular , Simulación de Dinámica Molecular
10.
J Chem Inf Model ; 61(5): 2454-2462, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33939423

RESUMEN

Accurate calculation of protein-protein binding free energy is of great importance in biological and medical science, yet it remains a hugely challenging problem. In this work, we develop a new strategy in which a screened electrostatic energy (i.e., adding an exponential damping factor to the Coulombic interaction energy) is used within the framework of the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method. Our results show that the Pearson correlation coefficient in the modified MM/PBSA is over 0.70, which is much better than that in the standard MM/PBSA, especially in the Amber14SB force field. In particular, the performance of the standard MM/PBSA is very poor in a system where the proteins carry like charges. Moreover, we also calculated the mean absolute error (MAE) between the calculated and experimental ΔG values and found that the MAE in the modified MM/PBSA was indeed much smaller than that in the standard MM/PBSA. Furthermore, the effect of the dielectric constant of the proteins and the salt conditions on the results was also investigated. The present study highlights the potential power of the modified MM/PBSA for accurately predicting the binding energy in highly charged biosystems.


Asunto(s)
Simulación de Dinámica Molecular , Unión Proteica , Electricidad Estática , Termodinámica
11.
Environ Sci Technol ; 54(23): 15215-15224, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33169997

RESUMEN

Natural organic matter (NOM) that forms coronas on the surface of engineered nanoparticles (NPs) affects their stability, bio-uptake, and toxicity. After corona formation, a large amount of unbound NOM remains in the environment and their effects on organismal uptake of NPs remain unknown. Here, the effects of unbound NOM on the uptake of polyacrylate-coated hematite NPs (HemNPs) by the protozoan Tetrahymena thermophila were examined. HemNPs were well-dispersed without any detectable NOM adsorption. Kinetics experiments showed that unbound NOM decreased the uptake of HemNPs with greater inhibition at lower concentrations of the particles in the presence of NOM of higher molecular weight. The unbound NOM suppressed clathrin-mediated endocytosis but not the phagocytosis of HemNPs. Confirmation of these events was obtained using label-free hyperspectral stimulated Raman spectroscopy imaging and dissipative particle dynamics simulation. Overall, the present study demonstrates that unbound NOM can compete with HemNPs for internalization receptors on the surface of T. thermophila and inhibit particle uptake, highlighting the need to consider the direct effects of unbound NOM in bioapplication studies and in safety evaluations of NPs.


Asunto(s)
Nanopartículas , Adsorción , Sustancias Húmicas/análisis , Cinética
12.
Phys Chem Chem Phys ; 22(29): 16855-16861, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32666963

RESUMEN

Selective ion transport through a nanochannel formed by stacked two-dimensional materials plays a key role in water desalination, nanofiltration, and ion separation. Although there have been many functional nanomaterials used in these applications, how to well control ion transport in a laminar structure so as to obtain the desired selectivity still remains a challenging problem. In the present work, the transport of ions through a C2N-based nanochannel is investigated by using all-atom molecular dynamics simulation. It is found that C2N-based nanochannels with different interlayer spacing posses diverse ion selectivity, which is mainly attributed to the distinct loading capability among ions and the different velocity of ions inside the nanochannel. Moreover, we also find that the ion selectivity is dependent on the electric field, but nearly independent of the salt concentration. The present study may provide some physical insights into the experimental design of C2N-based nanodevices in nanofiltration.

13.
Angew Chem Int Ed Engl ; 59(24): 9617-9623, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32147901

RESUMEN

A protein Pascal triangle has been constructed as new type of supramolecular architecture by using the inducing ligand strategy that we previously developed for protein assemblies. Although mathematical studies on this famous geometry have a long history, no work on such Pascal triangles fabricated from native proteins has been reported so far due to their structural complexity. In this work, by carefully tuning the specific interactions between the native protein building block WGA and the inducing ligand R-SL, a 2D Pascal-triangle lattice with three types of triangular voids has been assembled. Moreover, a 3D crystal structure was obtained based on the 2D Pascal triangles. The distinctive carbohydrate binding sites of WGA and the intralayer as well as interlayer dimerization of RhB was the key to facilitate nanofabrication in solution. This strategy may be applied to prepare and explore various sophisticated assemblies based on native proteins.

14.
J Am Chem Soc ; 141(40): 16014-16023, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31509391

RESUMEN

To explore a new supramolecular interaction as the main driving force to induce hierarchical self-assembly (HSA) is of great importance in supramolecular chemistry. Herein, we present a radical-induced HSA process through the construction of well-defined rhomboidal metallacycles containing triphenylamine (TPA) moieties. The light-induced radical generation of the TPA-based metallacycle has been demonstrated, which was found to subsequently drive hierarchical self-assembly of metallacycles in both solution and solid states. The morphologies of nanovesicle structures and nanospheres resulting from hierarchical self-assembly have been well-illustrated by using TEM and high-angle annular dark-field STEM (HAADF-STEM) micrographs. The mechanism of HSA is supposed to be associated with the TPA radical interaction and metallacycle stacking interaction, which has been supported by the coarse-grained molecular dynamics simulations. This study provides important information to understand the fundamental TPA radical interaction, which thus injects new energy into the hierarchical self-assembly of supramolecular coordination complexes (SCCs). More interestingly, the stability of TPA radical cations was significantly increased in these metallacycles during the hierarchical self-assembly process, thereby opening a new way to develop stable organic radical cations in the future.

15.
Langmuir ; 35(39): 12851-12857, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31474103

RESUMEN

The well control over the cell-nanoparticle interaction can be of great importance and necessity for different biomedical applications. In this work, we propose a new and simple way (i.e., polymeric tether) to tuning the interaction between nanoparticles and cell membranes by dissipative particle dynamics simulations. It is found that the linked nanoparticles (via polymeric tether) can show some cooperation during the cellular uptake and thereby have a higher wrapping degree than the single nanoparticle. The effect of the property of the polymer on the wrapping is also investigated, and it is found that the length, rigidity, and hydrophobicity of the polymer play an important role. More interestingly, the uptake of linked nanoparticles could be adjusted to the firm adhesion via two rigid polymeric tethers. The present study may provide some useful guidelines for novel design of functional nanomaterials in the experiments.


Asunto(s)
Membrana Celular/química , Nanopartículas/química , Polímeros/química , Éteres/química , Modelos Moleculares , Conformación Molecular
16.
Langmuir ; 34(33): 9829-9835, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30056705

RESUMEN

The efficient capture of nanoscopic particulates plays a key role in many scientific fields like filtration and fabrication of nanocomposites as well as biosensors. In this work, we design two types of nanosubstrates to capture the nanoparticle with specific property by using Brownian dynamics simulations. It is found that the substrate coated with copolymers (composed of nonspecific block and specific block) can be used to capture the nanoparticle with different sizes but its capture efficiency of nanoparticles with different shapes is very low. To overcome such problem, the other substrate containing shaped holes is also designed. By conducting a serial of control simulations, we find that the nonspecific polymers at the bottom and on the rim of the hole have great impact on the sensitive capture. The present study may provide some physical insights into the experimental design of nanodevices in real applications.

17.
Inorg Chem ; 57(19): 12143-12154, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30226764

RESUMEN

Four pairs of enantiomeric dysprosium(III) phosphonates, namely, R- or S-[Dy3(pempH2)2(pempH)7]2(NO3)4·12H2O ( R-1 or S-1), R- or S-[Dy3(pempH)7(pempH2)2]Cl2·2H2O ( R-2 or S-2), R- or S-[Dy3(pempH)7(pempH2)2]Br2·2H2O ( R-3 or S-3), and R- or S-[Dy11(pempH2)6(pempH)27](CF3SO3)6·22H2O ( R-4 or S-4) are reported, where R- or S-pempH2 represent R- or S-(1-phenylethyl)amino] methylphosphonic acid. All show homochiral chain structures, charge-balanced by counteranions. A comparison of the crystal morphologies of the R-isomers reveals that the overall shapes are quite similar for the four compounds, but the aspect ratio changes remarkably following the sequence: R-1 < R-2 < R-3 < R-4. The sequence is in agreement with the decreasing interchain interactions related to different counteranions, which is rationalized by molecular simulations. The counteranions also influence the intrachain structures and the local coordination environments of the DyIII ions. As a result, compounds R-2 and R-3 exhibit distinct dual relaxation processes at zero dc field with the effective energy barriers for the slow- and fast-relaxation being 79.1 and 37.6 K for R-2, and 80.0 and 39.1 K for R-3, respectively. For compounds R-1 and R-4, however, slow magnetic relaxation is also observed at zero dc field but without the appearance of maxima down to 1.8 K.

18.
Phys Chem Chem Phys ; 20(14): 9063-9069, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29446423

RESUMEN

Fast, low-cost and reliable DNA sequencing is one of the most desirable innovations in recent years, which can pave the way for high throughput, label-free and inexpensive personalized genome sequencing techniques. Although graphene-based nanopore devices hold great promise for next-generation DNA sequencing, it is still a challenging problem to detect different DNA sequences efficiently and accurately. In the present work, the translocation of four homogeneous DNA strands (i.e., poly(A)20, poly(C)20, poly(G)20, and poly(T)20) through the functionalized graphene nanopores is investigated by all-atom molecular dynamic simulations. Interestingly, it is found that the four types of bases could be identified by different ionic currents when they pass through the hydrogenated and hydroxylated pores. For the hydrogenated nanopore, the difference in the ionic current for the four bases is mainly attributed to the different electrostatic interactions between the base and the ion. For the hydroxylated nanopore, apart from the electrostatic interactions, the position of a nucleotide inside the nanopore and the dwell time of an ion around the nucleotide also play an important role in the ionic current. The present study could be helpful to better design a novel device for DNA sequencing in the future.


Asunto(s)
Grafito/química , Nanoporos , Polirribonucleótidos/química , Análisis de Secuencia de ADN/métodos , ADN/análisis , Hidrógeno/química , Iones/química , Simulación de Dinámica Molecular , Electricidad Estática , Propiedades de Superficie
19.
Angew Chem Int Ed Engl ; 56(36): 10691-10695, 2017 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-28504852

RESUMEN

In nature, proteins self-assemble into various structures with different dimensions. To construct these nanostructures in laboratories, normally proteins with different symmetries are selected. However, most of these approaches are engineering-intensive and highly dependent on the accuracy of the protein design. Herein, we report that a simple native protein LecA assembles into one-dimensional nanoribbons and nanowires, two-dimensional nanosheets, and three-dimensional layered structures controlled mainly by small-molecule assembly-inducing ligands RnG (n=1, 2, 3, 4, 5) with varying numbers of ethylene oxide repeating units. To understand the formation mechanism of the different morphologies controlled by the small-molecule structure, molecular simulations were performed from microscopic and mesoscopic view, which presented a clear relationship between the molecular structure of the ligands and the assembled patterns. These results introduce an easy strategy to control the assembly structure and dimension, which could shed light on controlled protein assembly.


Asunto(s)
Adhesinas Bacterianas/química , Nanoestructuras/química , Pseudomonas aeruginosa/química , Ligandos , Modelos Moleculares , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
20.
Phys Chem Chem Phys ; 18(40): 28290-28296, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27711432

RESUMEN

Although previous studies have indicated that the carbon nanotube (CNT) can be used for directed transportation of water and ions, it is still a challenging problem to design a CNT-based device for high performance water desalination. In this study, by using molecular dynamics simulations, we successfully design one type of CNT as a highly efficient desalination membrane through electrical resonance. By decorating the two ends of the CNT with vibrational charges, an alternating electric field is created inside the CNT. When the amplitude of the vibrational charge is 0.05 e, and the vibrational frequency is between 10 THz and 20 THz, the CNT can completely block the transportation of ions. The decrease of the amplitude or the deviation of the frequency in an appropriate range will gradually increase the ion flow. Besides, we also reveal the underlying molecular mechanism of ion blockage, i.e., the electric resonance can disrupt the water structure inside the CNT and then alter the hydration energy of ions inside the CNT. More importantly, we further demonstrate that this mechanism is universal, which is independent of the type of ions and the size of CNT. The present work could be useful for designing water desalination membranes with lower energy consumption and higher fresh water production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA