RESUMEN
The sodium (Na) metal anode encounters issues such as volume expansion and dendrite growth during cycling. Herein, a novel three-dimensional flexible composite Na metal anode was constructed through the conversion-alloying reaction between Na and ultrafine Sb2S3 nanoparticles encapsulated within the electrospun carbon nanofibers (Sb2S3@CNFs). The formed sodiophilic Na3Sb sites and the high Na+-conducting Na2S matrix, coupled with CNFs, establish a spatially confined "sodiophilic-conductive" network, which effectively reduces the Na nucleation barrier, improves the Na+ diffusion kinetics, and suppresses the volume expansion, thereby inhibiting the Na dendrite growth. Consequently, the Na/Sb2S3@CNFs electrode exhibits a high Coulombic efficiency (99.94%), exceptional lifespan (up to 2800 h) at high current densities (up to 5 mA cm-2), and high areal capacities (up to 5 mAh cm-2) in symmetric cells. The coin-type full cells assembled with a Na3V2(PO4)3/C cathode demonstrate significant enhancement in electrochemical performance. The flexible pouch cell achieves an excellent energy density of 301 Wh kg-1.
RESUMEN
Zinc-iodine batteries are one of the most intriguing types of batteries that offer high energy density and low toxicity. However, the low intrinsic conductivity of iodine, together with high polyiodide solubility in aqueous electrolytes limits the development of high-areal-capacity zinc-iodine batteries with high stability, especially at low current densities. Herein, we proposed a hydrophobic polyiodide ionic liquid as a zinc-ion battery cathode, which successfully activates the iodine redox process by offering 4 orders of magnitude higher intrinsic electrical conductivity and remarkably lower solubility that suppressed the polyiodide shuttle in a dual-plating zinc-iodine cell. By the molecular engineering of the chemical structure of the polyiodide ionic liquid, the electronic conductivity can reach 3.4 × 10-3 S cm-1 with a high Coulombic efficiency of 98.2%. The areal capacity of the zinc-iodine battery can achieve 5.04 mAh cm-2 and stably operate at 3.12 mAh cm-2 for over 990 h. Besides, a laser-scribing designed flexible dual-plating-type microbattery based on a polyiodide ionic liquid cathode also exhibits stable cycling in both a single cell and 4 × 4 integrated cell, which can operate with the polarity-switching model with high stability.
RESUMEN
Iron-nitrogen-carbon (Fe-N-C) catalysts, although the most active platinum-free option for the cathodic oxygen reduction reaction (ORR), suffer from poor durability due to the Fe leaching and consequent Fenton effect, limiting their practical application in low-temperature fuel cells. This work demonstrates an integrated catalyst of a platinum-iron (PtFe) alloy planted in an Fe-N-C matrix (PtFe/Fe-N-C) to address this challenge. This novel catalyst exhibits both high-efficiency activity and stability, as evidenced by its impressive half-wave potential (E1/2) of 0.93 V versus reversible hydrogen electrode (vs RHE) and minimal 7 mV decay even after 50,000 potential cycles. Remarkably, it exhibits a very low hydrogen peroxide (H2O2) yield (0.07%) at 0.6 V and maintains this performance with negligible change after 10,000 potential cycles. Fuel cells assembled with this cathode PtFe/Fe-N-C catalyst show exceptional durability, with only 8 mV voltage loss at 0.8 A cm-2 after 30,000 cycles and ignorable current degradation at a voltage of 0.6 V over 85 h. Comprehensive in situ experiments and theoretical calculations reveal that oxygen species spillover from Fe-N-C to PtFe alloy not only inhibits H2O2 production but also eliminates harmful oxygenated radicals. This work paves the way for the design of highly efficient and stable ORR catalysts and has significant implications for the development of next-generation fuel cells.
RESUMEN
Iron-nitrogen-carbon single atom catalyst (SAC) is regarded as one of the promising electrocatalysts for NO3 - reduction reaction (NO3 RR) to NH3 due to its high activity and selectivity. However, synergistic effects of topological defects and FeN4 active moiety in Fe-N-C SAC have rarely been investigated. By performing density functional theory (DFT) calculations, 13 defective graphene FeN4 with 585, 484, and 5775 topological line defects are constructed, yielding 585-68-FeN4 with optimal NO3 RR catalytic activity, high selectivity, as well as robust anti-dissolution stability. The high NO3 RR activity on 585-68-FeN4 is well explained by the high valence state of Fe center as well as asymmetric charge distribution on FeN4 moiety influenced by 5- and 8-member rings. This DFT work provides theoretical guidance for engineering NO3 RR performance of iron-nitrogen-carbon catalysts by modulating periodic topological defects.
RESUMEN
Rechargeable aprotic Li-CO2 batteries have aroused worldwide interest owing to their environmentally friendly CO2 fixation ability and ultra-high specific energy density. However, its practical applications are impeded by the sluggish reaction kinetics and discharge product accumulation during cycling. Herein, a flexible composite electrode comprising CoSe2 nanoparticles embedded in 3D carbonized melamine foam (CoSe2/CMF) for Li-CO2 batteries is reported. The abundant CoSe2 clusters can not only facilitate CO2 reduction/evolution kinetics but also serve as Li2CO3 nucleation sites for homogeneous discharge product growth. The CoSe2/CMF-based Li-CO2 battery exhibits a large initial discharge capacity as high as 5.62 mAh cm-2 at 0.05 mA cm-2, a remarkably small voltage gap of 0.72 V, and an ultrahigh energy efficiency of 85.9% at 0.01 mA cm-2, surpassing most of the noble metal-based catalysts. Meanwhile, the battery demonstrates excellent cycling stability of 1620 h (162 cycles) at 0.02 mA cm-2 with an average overpotential of 0.98 V and energy efficiency of 85.4%. Theoretical investigations suggest that this outstanding performance is attributed to the suitable CO2/Li adsorption and low Li2CO3 decomposition energy. Moreover, flexible Li-CO2 pouch cell with CoSe2/CMF cathode displays stable power output under different bending deformations, showing promising potential in wearable electronic devices.
RESUMEN
Doping anions into LiFePO4 can improve the electrochemical performance of lithium-ion batteries. In this study, structures, electronic properties and Li-ion migration of anion (F- , Cl- , and S2- ) doping into LiFePO4 were systematically investigated by means of density functional theory calculations. Anion substitution for oxygen atoms leads to an expansion of the LiFePO4 lattice, significantly facilitating Li-ion diffusion. For Cl- and F- anion doped into LiFePO4 , the energy barrier of Li-ion migration gets lowered to 0.209 eV and 0.283â eV from 0.572â eV. The introduction of anions narrows the forbidden band of LiFePO4 , enhancing its electronic conductivity. This work pays a way towards the rational design of high-performance lithium-ion batteries.
RESUMEN
Scrutinizing the electromagnetic wave absorption mechanism of sulfides remains a challenge due to the variability of the modulation of the crystal structure of the sulfides. To take advantage of this variability, nanosheet-assembled Cu9S5/CN composites with sulfur vacancies were prepared in this study by self-assembly synthesis and subsequent high-temperature heat treatment. Systematic studies show the phase transition-dependent induced decrease in the conductivity, the defect site-induced difference in the charge density, the weakened vacancy formation of defect polarization loss, and the influence of valence state on electric dipole polarization loss and interfacial polarization loss, making the optimization of the dielectric constant a significant positive effect on the improvement of impedance matching. This work provides a reliable example and theoretical guidance for the crystal structure design for the preparation of a new generation of efficient sulfide-based wave-absorbing materials.
RESUMEN
Tin oxide-based (SnO2) materials show high theoretical capacity for lithium and sodium storage benefiting from a double-reaction mechanism of conversion and alloying reactions. However, due to the limitation of the reaction thermodynamics and kinetics, the conversion reaction process of SnO2usually shows irreversibility, resulting in serious capacity decay and hindering the further application of the SnO2anode. Herein, SnO2/SnS heterojunction was anchored on the surface and inside of CMK-3 byinsitusynthesis method, forming a stable 3D structural material (SnO2/SnS@CMK-3). The electrochemical properties of SnO2/SnS@CMK-3 composite show high capacity and reversible conversion reaction, which was attributed to the synergistic effect of CMK-3 and SnO2/SnS heterojunction. To further investigate the influence of the heterojunction on the reversibility of the conversion reaction, the Gibbs free energy (ΔG) was calculated using density functional theory. The results show that SnO2/SnS heterojunction has a closer to zero ΔGfor lithium/sodium ion batteries compared to SnO2, indicating that the heterojunction enhances the reversibility of the conversion reaction in chemical reaction thermodynamics. Our work provides insights into the reversibility of the conversion reaction of SnO2-based materials, which is essential for improving their electrochemical performance.
RESUMEN
Artificial polymer solid electrolyte interphases (SEIs) with microphase-separated structures provide promising solutions to the inhomogeneity and cracking issues of natural SEIs in lithium metal batteries (LMBs). However, achieving homogeneous ionic conductivity, excellent mechanical properties, and superior interfacial stability remains challenging due to interference from hard-phase domains in ion transport and solid-solid interface issues with lithium metal. Herein, we present a dynamic supramolecular ion-conducting poly(urethane-urea) interphase (DSIPI) that achieves these three properties through modulating the hard-phase domains and constructing a composite SEI in situ. The soft-phase polytetrahydrofuran backbone, featuring loose Li+-O coordinating interactions, ensures uniform Li+ transport. Concurrently, sextuple hydrogen bonds in the hard phase dissipate strain energy through sequential bond cleavage, thereby imparting exceptional mechanical properties. Moreover, enriched bis(trifluoromethanesulfonyl)imide anion (TFSI-) in DSIPI promotes the in-situ formation of a stable polymer-inorganic composite SEI during cycling. Consequently, the DSIPI-protected lithium anode (DSIPI@Li) enables symmetric cells with exceptional cyclability exceeding 4,000 hours at an ultra-high current density of 20 mA cm-2, thereby demonstrating excellent cycling stability. Furthermore, DSIPI@Li facilitates stable operation of the pouch cells under the constraints of a high-loading LiNi0.8Co0.1Mn0.1O2 cathode and low negative/positive capacity (N/P) ratio. This work presents a powerful strategy for designing artificial SEIs and high-performance LMBs.
RESUMEN
Parasitic side reactions and dendrite growth on zinc anodes are formidable issues causing limited lifetime of aqueous zinc ion batteries (ZIBs). Herein, a spontaneous cascade optimization strategy is first proposed to regulate Zn2+ migration-diffusion behavior. Specifically, PAPE@Zn layer with separation-reconstruction properties is constructed in situ on Zn anode. In this layer, well-soluble poly(ethylene oxide) (PEO) can spontaneously separation to bulk electrolyte and weaken the preferential coordination between H2O and Zn2+ to achieve primary optimization. Meanwhile, poor-soluble polymerized-4-acryloylmorpholine (PACMO) is reconstructed on Zn anode as hydrophobic flower-like arrays with abundant zincophilic sites, further guiding the de-solvation and homogeneous diffusion of Zn2+ to achieve the secondary optimization. Cascade optimization effectively regulates Zn2+ migration-diffusion behavior, dendrite growth and side reactions of Zn anode are negligible, and the stability is significantly improved. Consequently, symmetrical cells exhibit stability over 4000â h (1â mA cm-2). PAPE@Zn//NH4 +-V2O5 full cells with a high current density of 15â A g-1 maintains 72.2 % capacity retention for 12000â cycles. Even better, the full cell demonstrates excellent performance of cumulative capacity of 2.33â Ah cm-2 at ultra-low negative/positive (N/P) ratio of 0.6 and a high mass-loading (~17â mg cm-2). The spontaneous cascade optimization strategy provides novel path to achieve high-performance and practical ZIBs.
RESUMEN
The instability of the solid electrolyte interface (SEI) is a critical challenge for the zinc metal anodes, leading to an erratic electrode/electrolyte interface and hydrogen evolution reaction (HER), ultimately resulting in anode failure. This study uncovers that the fluorine species dissolution is the root cause of SEI instability. To effectively suppress the F- dissolution, an introduction of a low-polarity molecule, 1,4-thioxane (TX), is proposed, which reinforces the stability of the fluorine-rich SEI. Moreover, the TX molecule has a strong affinity for coordinating with Zn2+ and adsorbing at the electrode/electrolyte interface, thereby diminishing the activity of local water and consequently impeding SEI dissolution. The robust fluorine-rich SEI layer promotes the high durability of the zinc anode in repeated plating/stripping cycles, while concurrently suppressing HER and enhancing Coulombic efficiency. Notably, the symmetric cell with TX demonstrates exceptional electrochemical performance, sustaining over 500â hours at 20â mA cm-2 with 10â mAh cm-2. Furthermore, the Zn||KVOH full cell exhibits excellent capacity retention, averaging 6.8â mAh cm-2 with 98 % retention after 400â cycles, even at high loading with a lean electrolyte. This work offers a novel perspective on SEI dissolution as a key factor in anode failure, providing valuable insights for the electrolyte design in energy storage devices.
RESUMEN
The electrochemical CO2 reduction reaction (eCO2RR) to multicarbon products has been widely recognized for Cu-based catalysts. However, the structural changes in Cu-based catalysts during the eCO2RR pose challenges to achieving an in-depth understanding of the structure-activity relationship, thereby limiting catalyst development. Herein, we employ constant-potential density functional theory calculations to investigate the sintering process of Cu single atoms of Cu-N-C single-atom catalysts into clusters under eCO2RR conditions. Systematic constant-potential ab initio molecular dynamics simulations revealed that the leaching of Cu-(CO)x moieties and subsequent agglomeration into clusters can be facilitated by synergistic adsorption of H and eCO2RR intermediates (e.g., CO). Increasing the Cu2+ concentration or the applied potential can efficiently suppress Cu sintering. Both microkinetic simulations and experimental results further confirm that sintered Cu clusters play a crucial role in generating C2 products. These findings provide significant insights into the dynamic evolution of Cu-based catalysts and the origin of their activity toward C2 products during the eCO2RR.
RESUMEN
Aprotic Li-CO2 batteries suffer from sluggish solid-solid co-oxidation kinetics of C and Li2CO3, requiring extremely high charging potentials and leading to serious side reactions and poor energy efficiency. Herein, we introduce a novel approach to address these challenges by modulating the reaction pathway with tailored Pt d-electrons and develop an aprotic Li-CO2 battery with CO and Li2CO3 as the main discharge products. Note that the gas-solid co-oxidation reaction between CO and Li2CO3 is both kinetically and thermodynamically more favorable. Consequently, the Li-CO2 batteries with CoPt alloy-supported on nitrogen-doped carbon nanofiber (CoPt@NCNF) cathode exhibit a charging potential of 2.89 V at 50 µA cm-2, which is the lowest charging potential to date. Moreover, the CoPt@NCNF cathode also shows exceptional cycling stability (218 cycles at 50 µA cm-2) and high energy efficiency up to 74.6%. Comprehensive experiments and theoretical calculations reveal that the lowered d-band center of CoPt alloy effectively promotes CO desorption and inhibits further CO reduction to C. This work provides promising insights into developing efficient and CO-selective Li-CO2 batteries.
RESUMEN
Gel polymer electrolytes (GPEs) hold great promise for the practical application of lithium metal batteries. However, conventional GPEs hardly resists lithium dendrites growth and maintains long-term cycling stability of the battery due to its poor mechanical performance. Inspired by the slide-ring structure of polyrotaxanes (PRs), herein we developed a dynamic slide-crosslinked gel polymer electrolyte (SCGPE) with extraordinary stretchability of 970.93 % and mechanical strength of 1.15â MPa, which is helpful to buffer the volume change of electrodes and maintain mechanical integrity of the battery structure during cycling. Notably, the PRs structures can provide fast ion transport channels to obtain high ionic conductivity of 1.73×10-3â S cm-1 at 30 °C. Additionally, the strong polar groups in SCGPE restrict the free movement of anions to achieve high lithium-ion transference number of 0.71, which is favorable to enhance Li+ transport dynamics and induce uniform Li+ deposition. Benefiting from these features, the constructed Li|SCGPE-3|LFP cells exhibit ultra-long and stable cycle life over 1000 cycles and high-capacity retention (89.6 % after 1000 cycles). Even at a high rate of 16â C, the cells deliver a high capacity of 79.2â mAh g-1. The slide-crosslinking strategy in this work provides a new perspective on the design of advanced GPEs for LMBs.
RESUMEN
The Li-CO2 batteries utilizing greenhouse gas CO2 possess advantages of high energy density and environmental friendliness. However, these batteries following Li2CO3-product route typically exhibit low work voltage (<2.5â V) and energy efficiency. Herein, we have demonstrated for the first time that cobalt phthalocyanine (CoPc) as homogeneous catalyst can elevate the work plateau towards 2.98â V, which is higher than its theoretical discharge voltage without changing the Li2CO3-product route. This unprecedented discharge voltage is illustrated by mass spectrum and electrochemical analyses that CoPc has powerful adsorption capability with CO2 (-7.484â kJ mol-1) and forms discharge intermediate of C33H16CoN8O2. Besides high discharge capacity of 18724â mAh g-1 and robust cyclability over 1600â hours (1000â mAh g-1 cut-off) at a current density of 100â mA g-1, the batteries show high temperature adaptability (-30-80 °C). Our work is paving a promising avenue for the progress of high-efficiency Li-CO2 batteries.
RESUMEN
Additive engineering plays a pivotal role in achieving high-quality light-absorbing layers for high-performance and stable perovskite solar cells (PSCs). Various functional groups within the additives exert distinct regulatory effects on the perovskite layer. However, few additive molecules can synergistically fulfill the dual functions of regulating crystallization and passivating defects. Here, we custom-synthesized 2-ureido-4-pyrimidone (UPy) organic small molecules with diverse functional groups as additives to modulate crystallization and defects in perovskite films via the Michael addition reaction. Theoretical and experimental investigations demonstrate that the -OH groups in UPy exhibit significant effects in fixing uncoordinated Pb2+ ions, passivation of lead-iodide antisite defects, alleviating hysteresis, and reducing non-radiative recombination. Furthermore, the enhanced C=O and -NH2 motifs interact with the A-site cation via hydrogen bonding, which relieves residual strain and adjusts crystal orientation. This strategy effectively controls perovskite crystallization and passivates defects, ultimately enhancing the quality of perovskite films. Consequently, the open-circuit voltage of the UPy-based p-i-n PSCs reaches 1.20â V, and the fill factor surpasses 84 %. The champion device delivers a power conversion efficiency of 25.75 %. Remarkably, the unencapsulated device maintained 96.9 % and 94.5 % of its initial efficiency following 3,360â hours of dark storage and 1,866â hours of 1-sun illumination, respectively.
RESUMEN
The efficient conversion of a C-H bond in the polyether chain to other functional groups provides great opportunities for development of novel applications in many research fields. However, this field is quite underdeveloped due to the key challenge on controlling the selectivity of the C-H bond functionalization over the chain cleavage. In this work, we report a controllable C-H bond alkylation of polyethers under mild conditions via photoinduced iron catalysis. The level of functionalization could be controlled by using different amounts of alkenes and various reaction times, while the molecular weight distributions were maintained narrow. A broad scope of electron-deficient alkenes containing nitrile, ester, epoxide, terminal alkynyl, 2,5-dioxotetrafuranyl, and 2,5-dioxopyrrolidinyl groups could be utilized to functionalize the different polyethers with great efficiencies. The potential applications of the modified polyethylene glycols and polyethylene oxides were explored by the preparation of novel hydrogels and solid-state electrolytes with enhancement of lithium ion conductivities. Moreover, the density functional theory calculation disclosed the plausible mechanism and explained the high selectivity for the C-H alkylation.
RESUMEN
Phase separation is a trivial phenomenon but a mature strategy in materials science. The flexible materials are provided toughness and strength by phase separation, yet there are few applications in optics and electronics industry. A novel phase-separated dielectric gel (PSDG) with a strong Christiansen effect is prepared via radical polymerization using hydroxyethyl methacrylate as a monomer, 4-cyano-4'-pentylbiphenyl and tributyl citrate as mixed solvents, and polyethylene glycol as a softener. The solvent ratios and ambient conditions can efficiently change the color of PSDG which makes it strongly selective for the wavelength of transmitted light. Besides, it has a high dielectric constant (10 at 1 kHz), sensitively responding to the electric field. The phase separation degree of PSDG varies with applied electric field, which will induce its transmittance alteration accordingly. The current field sensitive PSDG provides a novel idea for "smart windows". Additionally, varying the size and shape of the electrodes can precisely control the phase separation in PSDG and also enables the function of free writing on flexible materials. Therefore, the designed PSDG has great application potential for flexible touch and interesting interactions.
RESUMEN
Metal single-atom catalysts (M-SACs) attract extraordinary attention for promoting oxygen reduction reaction (ORR) with 100% atomic utilization. However, low metal loading (usually less than 2 wt%) limits their overall catalytic performance. Herein, a hierarchical-structure-stabilization strategy for fabricating high-loading (18.3%) M-SACs with efficient ORR activity is reported. Hierarchical pores structure generated with high N content by SiO2 can provide more coordination sites and facilitate the adsorption of Fe3+ through mesoporous and confinement effect of it stabilizes Fe atoms in micropores on it during pyrolysis. High N content on hierarchical pores structure could provide more anchor sites of Fe atoms during the subsequent secondary pyrolysis and synthesize the dense and accessible Fe-N4 sites after subsequent pyrolysis. In addition, Se power is introduced to modulate the electronic structure of Fe-N4 sites and further decrease the energy barrier of the ORR rate-determining step. As a result, the Fe single atom catalyst delivers unprecedentedly high ORR activity with a half-wave potential of 0.895 V in 0.1 M KOH aqueous solution and 0.791 V in 0.1 M HClO4 aqueous solution. Therefore, a hierarchical-pore-stabilization strategy for boosting the density and accessibility of Fe-N4 species paves a new avenue toward high-loading M-SACs for various applications such as thermocatalysis and photocatalysis.
RESUMEN
Electrochemical reactions mostly take place at a constant potential, but traditional DFT calculations operate at a neutral charge state. In order to really model experimental conditions, we developed a fixed-potential simulation framework via the iterated optimization and self-consistence of the required Fermi level. The B-doped graphene-based FeN4 sites for oxygen reduction reaction were chosen as the model to evaluate the accuracy of the fixed-potential simulation. The results demonstrate that *OH hydrogenation gets facile while O2 adsorption or hydrogenation becomes thermodynamically unfavorable due to the lower d-band center of Fe atoms in the constant potential state than the neutral charge state. The onset potential of ORR over B-doped FeN4 by performing potential-dependent simulations agree well with experimental findings. This work indicates that the fixed-potential simulation can provide a reasonable and accurate description on electrochemical reactions.