Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Biochem ; 677: 115232, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37481195

RESUMEN

In view of the superior chemical activity of selenoether bond (-Se-) and the excellent optical properties of naphthimide, a novel fluorescent probe (NapSe) with near-rectangular structure, which contains double naphthimide fluorophores linked by selenoether bond, is designed for specific fluorescence detection of hydrogen sulfide (H2S). NapSe has excellent optical properties: super large Stokes Shift (190 nm) and good stability in a wide pH range. The selectivity of NapSe fluorescence detection of H2S is high, and displays excellent "turn-on" phenomenon and strong anti-interference. And the fluorescence intensity increased obviously, reaching 42 times. The time response of probe NapSe is very rapid (3 min) compared with other fluorescence probes that respond to H2S. It shows high sensitivity by calculating the detection limit (LOD) as low as 5.4 µM. Notably, the identification of H2S by probe NapSe has been successfully applied to the detection of test paper and the detection of exogenous and endogenous fluorescence imaging of MCF-7 breast cancer cells.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Humanos , Colorantes Fluorescentes/química , Células MCF-7 , Imagen Óptica , Espectrometría de Fluorescencia , Células HeLa
2.
Sensors (Basel) ; 23(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430541

RESUMEN

A temperature measurement subsystem (TMS) is a critical piece of infrastructure of the space gravitational wave detection platform, necessary for monitoring minuscule temperature changes at the level of 1µK/Hz1/2 within the electrode house, in the frequency range of 0.1mHz to 1Hz. The voltage reference (VR), a key component of the TMS, must possess low noise characteristics in the detection band to minimize the impact on temperature measurements. However, the noise characteristics of the voltage reference in the sub-millihertz range have not been documented yet and require further study. This paper reports a dual-channel measurement method for measuring the low-frequency noise of VR chips down to 0.1mHz. The measurement method makes use of a dual-channel chopper amplifier and an assembly thermal insulation box to achieve a normalized resolution of 3×10-7/Hz1/2@0.1mHz in the VR noise measurement. The seven best-performance VR chips documented at a common frequency range are tested. The results show that their noise at sub-millihertz frequencies can significantly differ from that around 1Hz.

3.
Small ; 18(26): e2201838, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35618445

RESUMEN

Nanostructured carbon materials with high porosity and desired chemical functionalities are of immense interest because of their wide application potentials in catalysis, environment, and energy storage. Herein, a top-down templating strategy is presented for the facile synthesis of functional porous carbons, based on the direct carbonization of diverse organic precursors with commercially available metal oxide powders. During the carbonization, the metal oxide powders can evolve into nanoparticles that serve as in situ templates to introduce nanopores in carbons. The porosity and heteroatom doping of the prepared carbon materials can be engineered by varying the organic precursors and/or the metal oxides. It is further demonstrated that the top-down templating strategy is applicable to prepare carbon-based single-atom catalysts with iron-nitrogen sites, which exhibit a high power density of 545 mW cm-2 in a H2 -air proton exchange membrane fuel cell.


Asunto(s)
Carbono , Nanoporos , Óxidos , Porosidad , Polvos
4.
Appl Opt ; 61(28): 8197-8203, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256131

RESUMEN

Studying high-sensitivity fiber-optic temperature sensors is vital in pursuing high-precision temperature measurement. We propose a liquid-sealed multimode interference fiber temperature sensor with a double-taper structure. The influence of structure and sealed-liquid material on the temperature sensitivity of the sensor is analyzed experimentally. The results show that the tapered structure can effectively improve the temperature sensitivity of the sensor, and the effect becomes more evident with the increased refractive index of the sealed liquid. As the refractive index of the sealed liquid increases, the temperature sensitivity of the sensor can be effectively improved. However, the sealed liquid with a high refractive index will increase the failure temperature of the sensor. Near the failure temperature, the sensor achieves an ultra-high-temperature sensitivity of -8.28nm/K. The results also prove that further increasing the refractive index of the sealed liquid no longer has a significant gain in temperature sensitivity. It is expected that the relevant research will contribute to the development of high-precision temperature-sensing systems.

5.
Small ; 17(51): e2103178, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34655176

RESUMEN

The development of high-efficiency, robust, and available electrode materials for oxygen evolution reaction (OER) and lithium-ion batteries (LIBs) is critical for clean and sustainable energy system but remains challenging. Herein, a unique yolk-shell structure of Fe2 O3 nanotube@hollow Co9 S8 nanocage@C is rationally prepared. In a prearranged sequence, the fabrication of Fe2 O3 nanotubes is followed by coating of zeolitic imidazolate framework (ZIF-67) layer, chemical etching of ZIF-67 by thioacetamide, and eventual annealing treatment. Benefiting from the hollow structures of Fe2 O3 nanotubes and Co9 S8 nanocages, the conductivity of carbon coating and the synergy effects between different components, the titled sample possesses abundant accessible active sites, favorable electron transfer rate, and exceptional reaction kinetics in the electrocatalysis. As a result, excellent electrocatalytic activity for alkaline OER is achieved, which delivers a low overpotential of 205 mV at the current density of 10 mA cm-2 along with the Tafel slope of 55 mV dec-1 . Moreover, this material exhibits excellent high-rate capability and excellent cycle life when employed as anode material of LIBs. This work provides a novel approach for the design and the construction of multifunctional electrode materials for energy conversion and storage.

6.
Langmuir ; 37(5): 1697-1706, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33499598

RESUMEN

The study of ion specificities of charged-neutral random copolymers is of great importance for understanding specific ion effects on natural macromolecules. In the present work, we have investigated the specific anion effects on the thermoresponsive behavior of poly([2-(methacryloyloxy)ethyl trimethylammonium chloride]-co-N-isopropylacrylamide) [P(METAC-co-NIPAM)] random copolymers. Our study demonstrates that the anion specificities of the P(METAC-co-NIPAM) copolymers are dependent on their chemical compositions. The specific anion effects on the copolymers with high mole fractions of poly(N-isopropylacrylamide) (PNIPAM) are similar to those on the PNIPAM homopolymer. As the mole fraction of PNIPAM decreases to a certain value, a V-shaped anion series can be observed in terms of the anion-specific cloud point temperature of the copolymer, as induced by the interplay between different anion-polymer interactions. Our study also suggests that both the direct and the indirect anion-polymer interactions contribute to the anion specificities of the copolymers. This work would improve our understanding of the relationship between the ion specificities and the ion-macromolecule interactions for naturally occurring macromolecules.

7.
Inorg Chem ; 58(24): 16818-16822, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31756094

RESUMEN

Materials with a low coefficient of thermal expansion (CTE) are extremely demanded in many fields, varying from microelectronics to space technology. Here we report a novel method to achieve low CTE, which differs essentially from the conventional way that uses additives with negative thermal expansion (NTE) to compensate for the positive CTE of the matrix. The stoichiometric Hf0.87Ta0.13Fe2+x (x = 0) shows a giant NTE, which is gradually suppressed with increasing x and finally changed to near-zero thermal expansion (ZTE) at x ≈ 0.4. The excess Fe was suggested to form anti-site defects by occupying the 4f sites. As revealed by electron spin resonance (ESR) spectra, the weakened NTE is closely related to a slower ferromagnetic (FM) ordering process than observed at x = 0. In addition, the CTE can be further tuned by introducing an extra α-Fe phase to achieve a low CTE (e.g., 3.3 ppm/K for x = 1.0) with markedly enhanced mechanical properties, beneficial to applications.

8.
Angew Chem Int Ed Engl ; 57(24): 7085-7090, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29687551

RESUMEN

Carbon aerogels with 3D networks of interconnected nanometer-sized particles exhibit fascinating physical properties and show great application potential. Efficient and sustainable methods are required to produce high-performance carbon aerogels on a large scale to boost their practical applications. An economical and sustainable method is now developed for the synthesis of ultrathin carbon nanofiber (CNF) aerogels from the wood-based nanofibrillated cellulose (NFC) aerogels via a catalytic pyrolysis process, which guarantees high carbon residual and well maintenance of the nanofibrous morphology during thermal decomposition of the NFC aerogels. The wood-derived CNF aerogels exhibit excellent electrical conductivity, a large surface area, and potential as a binder-free electrode material for supercapacitors. The results suggest great promise in developing new families of carbon aerogels based on the controlled pyrolysis of economical and sustainable nanostructured precursors.

9.
BMC Public Health ; 15: 921, 2015 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-26386951

RESUMEN

BACKGROUND: Due to the rising standard of living environment and advances in public health and medical care in China, it has been a tendency in recent years that health-related quality of life (HRQoL) has been increasingly acknowledged in community health management. However, large-scale population-based study on evaluating HQRoL in northeast of China was not conducted. This article aims to investigate the HRQoL in community residents in Northeast China and explore the associated factors. METHODS: Stratified multiple-stage sampling method was used in the cross-sectional survey to investigate HRQoL of community residents in northeast of China. Univariate analysis and multiple linear regressions were used to analyze the factors associated to HRQoL of the community residents. RESULTS: The results were confirmed that HRQoL in general population was well performed for the first time in northeast of China in a large scale population. Community residents had better mental health than physical health. The factors influencing HRQoL included gender, age, educational level, marital status, ethnic group, chronic disease status, having breakfast frequency weekly and sleep quality. However, drinking and smoking habits did not affect residents' HRQoL. CONCLUSIONS: In this study, the result of the large-scale survey was satisfactory in northeast of China, providing HRQoL status of community residents. Policies on specific health management in community public health would emphasize on lifestyle behaviors especially eating habits in order to improving HRQoL.


Asunto(s)
Estado de Salud , Salud Mental/estadística & datos numéricos , Calidad de Vida , Población Urbana/estadística & datos numéricos , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Consumo de Bebidas Alcohólicas/epidemiología , China/epidemiología , Enfermedad Crónica , Estudios Transversales , Femenino , Humanos , Estilo de Vida , Masculino , Persona de Mediana Edad , Factores Sexuales , Fumar/epidemiología , Factores Socioeconómicos , Adulto Joven
10.
Int J Biol Macromol ; 263(Pt 1): 130192, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360233

RESUMEN

Crowded environments, commonly found in the food system, are utilized to enhance the properties of soybean proteins. Despite their widespread application, little information exists regarding the impact of crowded environments on the denaturation behaviors of soybean proteins. In this study, we investigated how crowding agents with varying molecular weights, functional groups, and topology affect the denaturation behavior of glycinin under crowded conditions. The results reveal that thermal stability in PEG crowded environments is mainly influenced by both preferential hydration and binding. The stabilization is primarily enthalpy-driven, with aggregation contributing additional entropic stabilization. Specifically, ethylene glycol and diethylene glycol exhibit temperature-dependent, bilateral effects on glycinin stability. At the denaturation temperature, hydrophobic interactions play a predominant role, decreasing glycinin's thermal stability. However, at a molecular weight of 200 g/mol, there is a delicate balance between destabilizing and stabilizing effects, leading to no significant change in thermal stability. With the addition of PEG 400, 1000, and 2000, besides preferential hydration, additional hard-core repulsions between glycinin molecules enhance thermal stability. Methylation modification experiments demonstrated that 2-methoxyethyl ether exerted a more pronounced denaturing effect. Additionally, the cyclization of PEG 1000 decreased its stabilizing effect.


Asunto(s)
Globulinas , Proteínas de Soja , Proteínas de Soja/química , Globulinas/química , Fenómenos Químicos , Interacciones Hidrofóbicas e Hidrofílicas
11.
Environ Sci Technol ; 47(16): 9397-403, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23895233

RESUMEN

Anthropogenic CO2 emission makes significant contribution to global climate change and CO2 capture and storage is a currently a preferred technology to change the trajectory toward irreversible global warming. In this work, we reported a new strategy that the inexhaustible MgCl2 in seawater and the abundantly available biomass waste can be utilized to prepare mesoporous carbon stabilized MgO nanoparticles (mPC-MgO) for CO2 capture. The mPC-MgO showed excellent performance in the CO2 capture process with the maximum capacity of 5.45 mol kg(-1), much higher than many other MgO based CO2 trappers. The CO2 capture capacity of the mPC-MgO material kept almost unchanged in 19-run cyclic reuse, and can be regenerated at low temperature. The mechanism for the CO2 capture by the mPC-MgO was investigated by FTIR and XPS, and the results indicated that the high CO2 capture capacity and the favorable selectivity of the as-prepared materials were mainly attributed to their special structure (i.e., surface area, functional groups, and the MgO NPs). This work would open up a new pathway to slow down global warming as well as resolve the pollution of waste biomass.


Asunto(s)
Dióxido de Carbono/química , Cloruro de Magnesio/síntesis química , Óxido de Magnesio/síntesis química , Nanopartículas/química , Biocombustibles , Biomasa
12.
Phys Chem Chem Phys ; 15(21): 8276-86, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23615691

RESUMEN

The solution behaviors and microstructures of poly(N-isopropylacrylamide)x-poly(ethylene oxide)20-poly(propylene oxide)70-poly(ethylene oxide)20-poly(N-isopropylacrylamide)x (PNIPAmx-PEO20-PPO70-PEO20-PNIPAmx or PNIPAmx-P123-PNIPAmx) pentablock terpolymers with various PNIPAm block lengths in dilute and concentrated aqueous solutions were investigated by micro-differential scanning calorimetry (micro-DSC), static and dynamic light scattering (SLS & DLS), and synchrotron small angle X-ray scattering (SAXS). Two lower critical solution temperatures (LCSTs) were observed for PNIPAmx-P123-PNIPAmx pentablock terpolymers in dilute solutions, which corresponded to LCSTs of PPO and PNIPAm blocks, respectively. The LCST of PPO block shifted from 24.4 °C to 29 °C when the length x of PNIPAm block increased from 10 to 97. The LCST of PNIPAm is around 34.5 °C-35.3 °C and less dependent on the block length x. The PNIPAmx-P123-PNIPAmx pentablock terpolymers formed "associate" structures and micelles with hydrophobic PNIPAm and PPO blocks as cores and soluble PEO blocks as coronas in dilute aqueous solutions at 20 °C and 40 °C, respectively, regardless of the relative lengths of PNIPAm, PPO and PEO blocks. The size of "associate" structures of PNIPAmx-P123-PNIPAmx pentablock terpolymers at 20 °C increased with increasing the length of PNIPAm block. The microstructures of PNIPAmx-P123-PNIPAmx hydrogels formed in concentrated aqueous solutions (40 wt%) were strongly dependent on the environmental temperatures and relative lengths of PNIPAm, PPO and PEO blocks as revealed by SAXS. Increasing the length of PNIPAm block weakened the order structures of PNIPAmx-P123-PNIPAmx hydrogels. The microstructures of PNIPAmx-P123-PNIPAmx hydrogels changed from mixed fcc and hex structures for PNIPAm10-P123-PNIPAm10 to isotropic structure for PNIPAm97-P123-PNIPAm97. Increasing temperature led to the transition from mixed hex and fcc structure to pure hex structure for PNIPAm10-P123-PNIPAm10 hydrogel at temperature above the LCSTs.

13.
ACS Appl Mater Interfaces ; 15(15): 18918-18927, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37018658

RESUMEN

SnS2/reduced graphite oxide (rGO) composite materials show great potential as high-performance anode candidates in sodium-ion batteries (SIBs) owing to their high specific capacities and power densities. However, the repeated formation/decomposition of the solid electrolyte interface (SEI) layer around composite anodes usually consumes additional sodium cations, resulting in poor Coulombic efficiency and decreasing specific capacity upon cycling. Therefore, in order to compensate for the large irreversible sodium loss of the SnS2/rGO anode, this study has proposed a facile strategy by implementing organic solutions of sodium-biphenyl/tetrahydrofuran (Na-Bp/THF) and sodium-naphthylamine/dimethoxyethane (Na-Naph/DME) as chemical presodiation reagents. Particularly, the storage stability of Na-Bp/THF and Na-Naph/DME in ambient air accompanied by their presodiation behavior on the SnS2/rGO anode has been investigated, and both reagents exhibited desirable ambient air-tolerant storage stability with favorable sodium supplement effects even after 20 days of storage. More importantly, the initial Coulombic efficiency (ICE) of SnS2/rGO electrodes could be controllably increased by immersing in a presodiation reagent for different durations. Consequently, with a facile chemical presodiation strategy of immersion in Na-Bp/THF solution for only 3 min in ambient air, the presodiated SnS2/rGO anode has exhibited an outstanding electrochemical performance with a high ICE of 95.6% as well as an ultrahigh specific capacity of 879.2 mAh g-1 after 300 cycles (83.5% of its initial capacity), highly superior to the pristine SnS2/rGO anode. This efficient and scalable presodiation strategy provides a new avenue for the prevailing application of other anode candidates in high-energy SIBs.

14.
J Colloid Interface Sci ; 611: 215-223, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34952274

RESUMEN

As a kind of negative electrode material for sodium-ion batteries (SIBs), tin-based active compounds have attracted numerous research efforts in recent years due to relatively high theoretical capacity. However, sluggish reaction kinetics for large-radius sodium ions hinders the practical application of layered tin-based anodes such as tin disulfide (SnS2) in SIBs. In this study, polyethylene glycol (PEG) is introduced as an intercalant and reduced graphene oxide (rGO) is utilized as the substrate to prepare a novel PEG-SnS2/rGO composite with expanded layer spacing (0.921 nm) through a facile hydrothermal process. SnS2 flakes in a size range of 50-100 nm are uniformly grown on the graphene sheet, the CS covalent bonding demonstrates a tight connection between the active SnS2 particles and the graphene skeleton, which is conductive to convenient charge transfer during the electrochemical process. Owing to the significantly improved sodium ions transport kinetics and fast electronic conductive network, the PEG-SnS2/rGO composite presents a high capacitance contribution of 90.69% at a scan rate of 0.6 mV s-1. It delivers a high reversible capacity of 960.6 mAh g-1 at 0.1 A g-1, good cycling performance with 770 mAh g-1 remained after 100 charge/discharge cycles, and excellent rate capability with an ultrahigh capacity of 720 mAh g-1 at 5 A g-1. This work provides new insights into the design of a kinetically favorable anode material for SIBs.

15.
Struct Dyn ; 9(5): 054901, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36090796

RESUMEN

The statics and dynamics of supercooled water in the hydration layer of poly(ethylene glycol) (PEG) were studied by a combination of quasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulations. Two samples, that is, hydrogenated PEG/deuterated water (h-PEG/D2O) and fully deuterated PEG/hydrogenated water (d-PEG/H2O) with the same molar ratio of ethylene glycol (EG) monomer to water, 1:1, are compared. The QENS data of h-PEG/D2O show the dynamics of PEG, and that of d-PEG/H2O reveals the motion of water. The temperature-dependent elastic scattering intensity of both samples has shown transitions at supercooled temperature, and these transition temperatures depend on the energy resolution of the instruments. Therefore, neither one is a phase transition, but undergoes dynamic process. The dynamic of water can be described as an Arrhenius to super-Arrhenius transition, and it reveals the hydrogen bonding network relaxation of hydration water around PEG at supercooled temperature. Since the PEG-water hydrogen bond structural relaxation time from MD is in good agreement with the average relaxation time from QENS (d-PEG/H2O), MD may further reveal the atomic pictures of the supercooled hydration water. It shows that hydration water molecules form a series of pools around the hydrophilic oxygen atom of PEG. At supercooled temperature, they have a more bond ordered structure than bulk water, proceed a trapping sites diffusion on the PEG surface, and facilitate the structural relaxation of PEG backbone.

16.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 2): m261, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21522912

RESUMEN

In the title complex, [ZnBr(2)(C(13)H(19)N(3)O)], the Zn(II) atom is five-coordinated by the three N-donor atoms of the Schiff base ligand and by two Br atoms in a distorted square-pyramidal geometry. The morpholine ring adopts a chair conformation.

17.
Biochim Biophys Acta ; 1794(6): 944-52, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19328871

RESUMEN

Trigger Factor (TF) is a three-domain chaperone which catalyzes nascent peptide folding and harbors peptidyl-prolyl cis-trans isomerase activity. The multi-domain structure of TF makes it an interesting and challenging candidate for studies of the structural properties and functional behavior of individual domains or combined domain constructs. Here we constructed a TF mutant, NC, combining the N- and C-domains that are responsible for TF's chaperone function, and compared structural changes and unfolding characteristics of NC with wild-type TF by monitoring fluorescence spectra, far-UV CD, chemical crosslinking, DSC and binding with hydrophobic probes (ANS or bis-ANS). The results showed that the NC construct, like intact TF, could bind to hydrophobic probes, form dimers in solution, and showed a similar 3-state guanidine-induced unfolding profile. However, the NC fragment showed reduced stability towards both guanidine unfolding and thermal denaturation, suggesting that the presence of the M-domain of TF contributes to the stability of the intact TF structure.


Asunto(s)
Proteínas de Escherichia coli/química , Sondas Moleculares , Isomerasa de Peptidilprolil/química , Rastreo Diferencial de Calorimetría , Dimerización , Proteínas de Escherichia coli/genética , Mutación , Isomerasa de Peptidilprolil/genética , Conformación Proteica
18.
Phys Chem Chem Phys ; 12(13): 3188-94, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20237708

RESUMEN

By choosing poly(N,N-diethylacrylamide) which lacks the possibility to form intra- or inter-chain hydrogen bonds, we studied its chain association and dissociation in water by using laser light scattering (LLS), ultrasensitive differential scanning calorimetry (US-DSC) and Fourier transform infrared spectroscopy (FTIR). As the solution temperature increases, the average hydrodynamic radius (R(h)) and average radius of gyration (R(g)) decrease, indicating the intrachain shrinking. When the temperature is higher than its lower critical solution temperature (LCST, approximately 30 degrees C), the apparent weight-average molar mass (M(w,app)) increases, reflecting the interchain association. At the same time, FTIR study reveals that as the temperature increases, the area ratio of two absorption peaks, respectively, associated to one hydrogen bonded carbonyl >C=O...H-O-H and free carbonyl >C=O groups increases, while that related to two hydrated hydrogen bonded carbonyl groups decreases, indicating heating-induced dehydration. In the reversible cooling process, R(h), R(g), M(w,app) and area ratios of the absorption peak are similar to those in the heating process for each given temperature, indicating that there is no hysteresis in the interchain association and dissociation. This present study confirms that the hysteresis previously observed for a sister polymer, poly(N-isopropylacrylamide), is due to the formation of some additional hydrogen bonds in its collapsed state at temperatures higher than the LCST.

19.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 10): o2636, 2010 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-21587608

RESUMEN

The title compound, C(15)H(16)N(4)O, was prepared by the reaction of pyridine-3-carbaldehyde with 4-dimethyl-amino-benzo-hydrazide in methanol. The dihedral angle between the pyridine and the benzene rings is 5.1 (3)°. In the crystal structure, the hydrazone mol-ecules are linked through inter-molecular N-H⋯O hydrogen bonds, forming chains along the b axis.

20.
Chem Sci ; 11(30): 7933-7939, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34094162

RESUMEN

Small-sized bimetallic nanoparticles that integrate the advantages of efficient exposure of the active metal surface and optimal geometric/electronic effects are of immense interest in the field of catalysis, yet there are few universal strategies for synthesizing such unique structures. Here, we report a novel method to synthesize sub-2 nm bimetallic nanoparticles (Pt-Co, Rh-Co, and Ir-Co) on mesoporous sulfur-doped carbon (S-C) supports. The approach is based on the strong chemical interaction between metals and sulfur atoms that are doped in the carbon matrix, which suppresses the metal aggregation at high temperature and thus ensures the formation of small-sized and well alloyed bimetallic nanoparticles. We also demonstrate the enhanced catalytic performance of the small-sized bimetallic Pt-Co nanoparticle catalysts for the selective hydrogenation of nitroarenes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA