Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Opt Express ; 32(8): 14356-14376, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859383

RESUMEN

X-ray phase contrast imaging (XPCI) has demonstrated capability to characterize inertial confinement fusion (ICF) capsules, and phase retrieval can reconstruct phase information from intensity images. This study introduces ICF-PR-Net, a novel deep learning-based phase retrieval method for ICF-XPCI. We numerically constructed datasets based on ICF capsule shape features, and proposed an object-image loss function to add image formation physics to network training. ICF-PR-Net outperformed traditional methods as it exhibited satisfactory robustness against strong noise and nonuniform background and was well-suited for ICF-XPCI's constrained experimental conditions and single exposure limit. Numerical and experimental results showed that ICF-PR-Net accurately retrieved the phase and absorption while maintaining retrieval quality in different situations. Overall, the ICF-PR-Net enables the diagnosis of the inner interface and electron density of capsules to address ignition-preventing problems, such as hydrodynamic instability growth.

2.
Opt Express ; 30(25): 45792-45806, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522976

RESUMEN

The quantitative measurement of plasma soft x-ray spectra is an important diagnostic problem in indirect-drive laser inertial confinement fusion (ICF). We designed, built, and tested a compact multichannel soft x-ray spectrometer with both spatial and temporal resolution capabilities for the detection of the spatiotemporal distribution of soft x-ray spectra. The spectrometer occupies a small solid angle, and the close measurement angle used for each channel enables the measurement of the angular distribution of emitting soft x-rays in ICF experiments. The spectrometer comprises pinhole, filter, and multilayer flat mirror arrays, and an x-ray streak camera. Its energy range is 0.1 - 3 keV. The dispersive elements of the spectrometer were calibrated at the Beijing Synchrotron Radiation Facility. The accuracy of the calibration was ≤ 5%, and the combined energy resolution (E/ΔE) of the calibrated dispersive elements of each channel was higher than 10. Finally, the instrument was tested at the Shenguang-III Laser Facility. The measurement results of x-ray radiation flux are agreed well with the experimental results of the M-band flat-response x-ray diode, demonstrating the feasibility of the proposed spectrometer configuration.

3.
Phys Rev Lett ; 128(19): 195001, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35622043

RESUMEN

The new hohlraum experimental platform and the quasi-3D simulation model are developed to enable the study of the indirect drive experiment using the six-cylinder-port hohlraum for the first time. It is also the first implosion experiment for the six laser-entrance-hole hohlraum to effectively use all the laser beams of the laser facility that is primarily designed for the cylindrical hohlraum. The experiments performed at the 100 kJ Laser Facility produce a peak hohlraum radiation temperature of ∼222 eV for ∼80 kJ and 2 ns square laser pulse. The inferred x-ray conversion efficiency η∼87% is similar to the cylindrical hohlraum and higher than the octahedral spherical hohlraum at the same laser facility, while the low laser backscatter is similar to the outer cone of the cylindrical hohlraum. The hohlraum radiation temperature and M-band (>1.6 keV) flux can be well reproduced by the quasi-3D simulation. The variations of the yield-over-clean and the hot spot shape can also be semiquantitatively explained by the calculated major radiation asymmetry of the quasi-3D simulation. Our work demonstrates the capability for the study of the indirect drive with the six-cylinder-port hohlraum at the cylindrically configured laser facility, which is essential for numerically assessing the laser energy required by the ignition-scale six-cylinder-port hohlraum.

4.
Phys Rev Lett ; 128(7): 075001, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35244411

RESUMEN

A new method for measuring the time-dependent drive flux at the hohlraum center is proposed as a better alternative to conventional wall-based techniques. The drive flux here is obtained by simultaneous measurement of the reemitted flux and shock velocity from a three-layered "cakelike" sample. With these two independent observables, the influence induced by the uncertainty of the material parameters of the sample can be effectively decreased. The influence from the closure of the laser entrance hole, which was the main challenge in conventional wall-based techniques, was avoided through localized reemitted flux measurement, facilitating drive flux measurement throughout the entire time history. These studies pave a new way for probing the time-dependent drive flux, for both cylindrical hohlraums and novel hohlraums with six laser entrance holes.

5.
Opt Express ; 29(4): 6133-6146, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33726140

RESUMEN

The motion law of complex fluids under extreme conditions is an important aspect of high energy density physics research. It has been demonstrated that using multi-channel curved crystals and a framing camera to observe the laser-produced target pellets doped with tracer elements is an appropriate method for investigating this law. This paper presents a feasible design scheme for a multi-channel toroidal imager, with the ray trace model used to verify the rationality of the evaluation method and the aberration of single toroidal crystal imaging. We demonstrate that the field of view (FOV) consistency of the four-channel Ge(400) toroidal crystal imager is less than 50 µm, while the best spatial resolution is ∼4 µm and the FOV of each channel is >2.2 mm.

6.
Opt Express ; 27(6): 8348-8360, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31052654

RESUMEN

The development of a polar-view Kirkpatrick-Baez microscope, fielded in the upper polar zone of the Shenguang-III laser fusion facility, is presented. With this microscope, the resolving power of polar-direction X-ray imaging diagnostics is improved, to the 3 ~5 µm scale. The microscope is designed for implosion asymmetry studies, with response energy points at 1.2 keV, 3.5 keV, and 8 keV. A biperiodic multilayer scheme is adopted to accommodate multiple implosion stages. We present the overall optical system design, target aiming scheme, characteristic composite imaging diagnostic experiments and initial results. The inertial-driven quasi-one-dimensional spherical implosions were observed from orthogonal directions with a convergence ratio of ~14.4. Fine features of the stagnating hot spot core are also resolved.

7.
Phys Rev Lett ; 120(16): 165001, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29756949

RESUMEN

The first octahedral spherical hohlraum energetics experiment is accomplished at the SGIII laser facility. For the first time, the 32 laser beams are injected into the octahedral spherical hohlraum through six laser entrance holes. Two techniques are used to diagnose the radiation field of the octahedral spherical hohlraum in order to obtain comprehensive experimental data. The radiation flux streaming out of laser entrance holes is measured by six flat-response x-ray detectors (FXRDs) and four M-band x-ray detectors, which are placed at different locations of the SGIII target chamber. The radiation temperature is derived from the measured flux of FXRD by using the blackbody assumption. The peak radiation temperature inside hohlraum is determined by the shock wave technique. The experimental results show that the octahedral spherical hohlraum radiation temperature is in the range of 170-182 eV with drive laser energies of 71 kJ to 84 kJ. The radiation temperature inside the hohlraum determined by the shock wave technique is about 175 eV at 71 kJ. For the flat-top laser pulse of 3 ns, the conversion efficiency of gas-filled octahedral spherical hohlraum from laser into soft x rays is about 80% according to the two-dimensional numerical simulation.

8.
Opt Express ; 25(3): 2608-2617, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29519104

RESUMEN

High resolution X-ray diagnosis is a significant method for obtaining ablation-front and trajectory measurements targeting Rayleigh-Taylor (RT)-instability growth in initial confinement fusion (ICF) experiments. In this paper, a novel Kirkpatrick-Baez-type structure, as a kind of essential X-ray micro-imaging apparatus, has been developed that realizes a large field of view (FOV) and images with high resolution and energy response. Zoned multilayer coating technology is applied to the Kirkpatrick-Baez mirrors to transmit two specific quasi-monochromatic light through the same mirror and enables a compact dual-channel structure. This microscope has been assembled in the laboratory and later implemented at the Chinese SG-III laser facility. The characterization results show that this imaging system can achieve a good spatial resolution of 5 µm in a large FOV of 500 µm, while maintaining a strong monochromatic performance with bandwidth of 0.5 keV at 2.5 keV and 4.3 keV respectively.

9.
Appl Opt ; 56(12): 3311-3318, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28430251

RESUMEN

This article presents the development of an x-ray eight-image Kirkpatrick-Baez diagnostic system to be used at China's Shenguang-III (SG-III) laser facility in aspects of the optical design, multilayers, and online/offline tests. Six pieces of concave spherical substrates are used for constituting a special optical structure. Dual-periodic tungsten/carbon (W/C) multilayers are used for high reflectivity and large angular bandwidth of ∼0.1°. The global spatial resolution is ∼5 µm in the ±100 µm range. The schemes of system installation, transport, collimation, and image acquisition at China's SG-III facility are also discussed.

10.
Phys Rev Lett ; 117(2): 025002, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27447512

RESUMEN

The first spherical hohlraum energetics experiment is accomplished on the SGIII-prototype laser facility. In the experiment, the radiation temperature is measured by using an array of flat-response x-ray detectors (FXRDs) through a laser entrance hole at four different angles. The radiation temperature and M-band fraction inside the hohlraum are determined by the shock wave technique. The experimental observations indicate that the radiation temperatures measured by the FXRDs depend on the observation angles and are related to the view field. According to the experimental results, the conversion efficiency of the vacuum spherical hohlraum is in the range from 60% to 80%. Although this conversion efficiency is less than the conversion efficiency of the near vacuum hohlraum on the National Ignition Facility, it is consistent with that of the cylindrical hohlraums used on the NOVA and the SGIII-prototype at the same energy scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA