Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sleep Breath ; 28(2): 823-833, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38147288

RESUMEN

PURPOSE: Circadian disruption has been a common issue due to modern lifestyles. Ventricular remodeling (VR) is a pivotal progressive pathologic change after acute myocardial infarction (AMI) and circadian disruption may have a negative influence on VR according to the latest research. Whether or not Guanxin V (GXV) has a positive effect on VR after AMI with circadian disruption drew our interest. METHODS: Rats were randomly divided into a sham group, an AMI group, an AMI with circadian disruption group, and an AMI with circadian disruption treated with the GXV group according to a random number table. RNA sequencing (RNA-Seq) was utilized to confirm the different expressed genes regulated by circadian disruption. Cardiac function, inflammation factors, pathological evaluation, and mitochondrial dynamics after the intervention were conducted to reveal the mechanism by which GXV regulated VR after AMI with circadian disruption. RESULTS: RNA-Seq demonstrated that NF-κB was up-regulated by circadian disruption in rats with AMI. Functional and pathological evaluation indicated that compared with the AMI group, circadian disruption was associcataed with deteriorated cardiac function, expanded infarcted size, and exacerbated fibrosis and cardiomyocyte apoptosis. Further investigation demonstrated that mitochondrial dynamics imbalance was induced by circadian disruption. GXV intervention reversed the inflammatory status including down-regulation of NF-κB. Reserved cardiac function, limited infarct size, and ameliorated fibrosis and apoptosis were also observed in the GXV treated group. GXV maintained mitochondrial fission/fusion imbalance through suppressed expression of mitochondrial fission-associated proteins. CONCLUSION: The study findings suggest that identified mitochondrial dysfunctions may underlie the link between circadian disruption and VR. GXV may exert cardioprotection after AMI with circadian disruption through regulating mitochondrial dynamics.


Asunto(s)
Dinámicas Mitocondriales , Infarto del Miocardio , Remodelación Ventricular , Animales , Infarto del Miocardio/patología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/fisiología , Ratas , Dinámicas Mitocondriales/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/farmacología , Trastornos Cronobiológicos/tratamiento farmacológico , Trastornos Cronobiológicos/fisiopatología , Trastornos Cronobiológicos/genética , Modelos Animales de Enfermedad
2.
iScience ; 27(4): 109442, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38523786

RESUMEN

Automatically and accurately segmenting skin lesions can be challenging, due to factors such as low contrast and fuzzy boundaries. This paper proposes a hybrid encoder-decoder model (CTH-Net) based on convolutional neural network (CNN) and Transformer, capitalizing on the advantages of these approaches. We propose three modules for skin lesion segmentation and seamlessly connect them with carefully designed model architecture. Better segmentation performance is achieved by introducing SoftPool in the CNN branch and sandglass block in the bottleneck layer. Extensive experiments were conducted on four publicly accessible skin lesion datasets, ISIC 2016, ISIC 2017, ISIC 2018, and PH2 to confirm the efficacy and benefits of the proposed strategy. Experimental results show that the proposed CTH-Net provides better skin lesion segmentation performance in both quantitative and qualitative testing when compared with state-of-the-art approaches. We believe the CTH-Net design is inspiring and can be extended to other applications/frameworks.

3.
Phytomedicine ; 125: 155276, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295661

RESUMEN

BACKGROUND: Coronary microembolism (CME) is commonly seen in the peri-procedural period of Percutaneous Coronary Intervention (PCI), where local platelet activation and endothelial cell inflammation crosstalk may lead to micro thrombus erosion and rupture, with serious consequences. Qihuang Zhuyu Formula (QHZYF) is a Chinese herbal compound with high efficacy against coronary artery disease, but its antiplatelet mechanism is unclear. HYPOTHESIS/PURPOSE: This study aimed to elucidate the effects and mechanisms of QHZYF on sodium laurate-induced CME using network pharmacology and in vitro and in vivo experiments. METHODS: We employed high-performance liquid chromatography mass spectrometry to identify the main components of QHZYF. Network pharmacology analysis, molecular docking and surface plasmon resonance (SPR) were utilized to predict the primary active components, potential therapeutic targets, and intervention pathways mediating the effects of QHZYF on platelet activation. Next, we pretreated a sodium laurate-induced minimally invasive CME rat model with QHZYF. In vivo experiments were performed to examine cardiac function in rats, to locate coronary arteries on heart sections to observe internal microthrombi, to extract rat Platelet-rich plasma (PRP) for adhesion assays and CD62p and PAC-1 (ITGB3/ITGA2B) flow assays, and to measure platelet-associated protein expression in PRP. In vitro clot retraction and Co-culture of HUVECs with PRP were performed and the gene pathway was validated through flow cytometry and immunofluorescence. RESULTS: Combining UPLC-Q-TOF/MS technology and database mining, 78 compounds were finally screened as the putative and representative compounds of QHZYF, with 75 crossover genes associated with CME. QHZYF prevents CME mainly by regulating key pathways of the inflammation and platelets, including Lipid and atherosclerosis, Fluid shear stress, platelet activation, and PI3K-Akt signaling pathways. Five molecules including Calyson, Oroxin A, Protosappanin A,Kaempferol and Geniposide were screened and subjected to molecular docking and SPR validation in combination with Lipinski rules (Rule of 5, Ro5). In vivo experiments showed that QHZYF not only improved myocardial injury but also inhibited formation of coronary microthrombi. QHZYF inhibited platelet activation by downregulating expression of CD62p receptor and platelet membrane protein αIIbß3 and reduced the release of von Willebrand Factor (vWF), Ca2+ particles and inflammatory factor IL-6. Further analysis revealed that QHZYF inhibited the activation of integrin αIIbß3, via modulating the PI3K/Akt pathways. In in vitro experiments, QHZYF independently inhibited platelet clot retraction. Upon LPS induction, the activation of platelet membrane protein ITGB3 was inhibited via the PI3K/Akt pathway, revealing an important mechanism for attenuating coronary microthrombosis. We performed mechanistic validation using PI3K inhibitor LY294002 and Akt inhibitor MK-2206 to show that QHZYF inhibited platelet membrane protein activation and inflammation to improved coronary microvessel embolism by regulating PI3K/Akt/αIIbß3 pathways, mainly by inhibiting PI3K and Akt phosphorylation. CONCLUSION: QHZYF interferes with coronary microthrombosis through inhibition of platelet adhesion, activation and inflammatory crosstalk, thus has potential in clinical anti-platelet applications. Calyson, Oroxin A, Protosappanin A, Kaempferol and Geniposide may be the major active ingredient groups of QHZYF that alleviate coronary microthrombosis.


Asunto(s)
Medicamentos Herbarios Chinos , Iridoides , Intervención Coronaria Percutánea , Fenoles , Trombosis , Ratas , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quempferoles/farmacología , Agregación Plaquetaria , Simulación del Acoplamiento Molecular , Activación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Trombosis/tratamiento farmacológico , Inflamación , Medicamentos Herbarios Chinos/farmacología
4.
Heliyon ; 10(2): e24177, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293445

RESUMEN

Background: In recent years, baroreflex activation therapy (BAT) has been utilized to treat heart failure with reduced ejection fraction (HFrEF). However, the supporting literature on its efficacy and safety is still limited. This investigation elucidates the effects of BAT in HFrEF patients to provide a reference for future clinical applications. Methods: This investigation follows Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines. Relevant investigations on the use of BAT in HFrEF patients were searched and selected from 5 databases, including Web of Science, MEDLINE, PubMed, Embase, and Cochrane Library, from inception to December 2022. The methodological quality of eligible articles was assessed via the Cochrane risk of bias tool, and for meta-analysis, RevMan (5.3) was used. Results: Randomized controlled trials comprising 343 participants were selected for the meta-analysis, which revealed that in HFrEF patients, BAT enhanced the levels of LVEF (MD: 2.97, 95 % CI: 0.53 to 5.41), MLHFQ (MD: -14.81, 95 % CI: -19.57 to -10.06) and 6MWT (MD: 68.18, 95 % CI: 51.62 to 84.74), whereas reduced the levels of LVEDV (MD: -15.79, 95 % CI: -32.96 to 1.37) and DBP (MD: -2.43, 95 % CI: -4.18 to -0.68). Conclusion: It was concluded that BAT is an efficient treatment option for HFrEF patients. However, to validate this investigation, further randomized clinical trials with multiple centers and large sample sizes are needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA