Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31540993

RESUMEN

SeqSero, launched in 2015, is a software tool for Salmonella serotype determination from whole-genome sequencing (WGS) data. Despite its routine use in public health and food safety laboratories in the United States and other countries, the original SeqSero pipeline is relatively slow (minutes per genome using sequencing reads), is not optimized for draft genome assemblies, and may assign multiple serotypes for a strain. Here, we present SeqSero2 (github.com/denglab/SeqSero2; denglab.info/SeqSero2), an algorithmic transformation and functional update of the original SeqSero. Major improvements include (i) additional sequence markers for identification of Salmonella species and subspecies and certain serotypes, (ii) a k-mer based algorithm for rapid serotype prediction from raw reads (seconds per genome) and improved serotype prediction from assemblies, and (iii) a targeted assembly approach for specific retrieval of serotype determinants from WGS for serotype prediction, new allele discovery, and prediction troubleshooting. Evaluated using 5,794 genomes representing 364 common U.S. serotypes, including 2,280 human isolates of 117 serotypes from the National Antimicrobial Resistance Monitoring System, SeqSero2 is up to 50 times faster than the original SeqSero while maintaining equivalent accuracy for raw reads and substantially improving accuracy for assemblies. SeqSero2 further suggested that 3% of the tested genomes contained reads from multiple serotypes, indicating a use for contamination detection. In addition to short reads, SeqSero2 demonstrated potential for accurate and rapid serotype prediction directly from long nanopore reads despite base call errors. Testing of 40 nanopore-sequenced genomes of 17 serotypes yielded a single H antigen misidentification.IMPORTANCE Serotyping is the basis of public health surveillance of Salmonella It remains a first-line subtyping method even as surveillance continues to be transformed by whole-genome sequencing. SeqSero allows the integration of Salmonella serotyping into a whole-genome-sequencing-based laboratory workflow while maintaining continuity with the classic serotyping scheme. SeqSero2, informed by extensive testing and application of SeqSero in the United States and other countries, incorporates important improvements and updates that further strengthen its application in routine and large-scale surveillance of Salmonella by whole-genome sequencing.


Asunto(s)
Genoma Bacteriano , Salmonella/genética , Serotipificación/métodos , Secuenciación Completa del Genoma , Serogrupo , Serotipificación/instrumentación , Programas Informáticos
2.
J Clin Microbiol ; 53(5): 1685-92, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25762776

RESUMEN

Serotyping forms the basis of national and international surveillance networks for Salmonella, one of the most prevalent foodborne pathogens worldwide (1-3). Public health microbiology is currently being transformed by whole-genome sequencing (WGS), which opens the door to serotype determination using WGS data. SeqSero (www.denglab.info/SeqSero) is a novel Web-based tool for determining Salmonella serotypes using high-throughput genome sequencing data. SeqSero is based on curated databases of Salmonella serotype determinants (rfb gene cluster, fliC and fljB alleles) and is predicted to determine serotype rapidly and accurately for nearly the full spectrum of Salmonella serotypes (more than 2,300 serotypes), from both raw sequencing reads and genome assemblies. The performance of SeqSero was evaluated by testing (i) raw reads from genomes of 308 Salmonella isolates of known serotype; (ii) raw reads from genomes of 3,306 Salmonella isolates sequenced and made publicly available by GenomeTrakr, a U.S. national monitoring network operated by the Food and Drug Administration; and (iii) 354 other publicly available draft or complete Salmonella genomes. We also demonstrated Salmonella serotype determination from raw sequencing reads of fecal metagenomes from mice orally infected with this pathogen. SeqSero can help to maintain the well-established utility of Salmonella serotyping when integrated into a platform of WGS-based pathogen subtyping and characterization.


Asunto(s)
Técnicas Bacteriológicas/métodos , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Salmonella/clasificación , Salmonella/genética , Serotipificación/métodos , Animales , Modelos Animales de Enfermedad , Heces/microbiología , Femenino , Humanos , Salmonella/aislamiento & purificación , Salmonelosis Animal
3.
Front Microbiol ; 14: 1225207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156000

RESUMEN

Identification of enteric bacteria species by whole genome sequence (WGS) analysis requires a rapid and an easily standardized approach. We leveraged the principles of average nucleotide identity using MUMmer (ANIm) software, which calculates the percent bases aligned between two bacterial genomes and their corresponding ANI values, to set threshold values for determining species consistent with the conventional identification methods of known species. The performance of species identification was evaluated using two datasets: the Reference Genome Dataset v2 (RGDv2), consisting of 43 enteric genome assemblies representing 32 species, and the Test Genome Dataset (TGDv1), comprising 454 genome assemblies which is designed to represent all species needed to query for identification, as well as rare and closely related species. The RGDv2 contains six Campylobacter spp., three Escherichia/Shigella spp., one Grimontia hollisae, six Listeria spp., one Photobacterium damselae, two Salmonella spp., and thirteen Vibrio spp., while the TGDv1 contains 454 enteric bacterial genomes representing 42 different species. The analysis showed that, when a standard minimum of 70% genome bases alignment existed, the ANI threshold values determined for these species were ≥95 for Escherichia/Shigella and Vibrio species, ≥93% for Salmonella species, and ≥92% for Campylobacter and Listeria species. Using these metrics, the RGDv2 accurately classified all validation strains in TGDv1 at the species level, which is consistent with the classification based on previous gold standard methods.

4.
J Clin Microbiol ; 49(2): 565-73, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21159932

RESUMEN

Serotyping of Salmonella has been an invaluable subtyping method for epidemiologic studies for more than 70 years. The technical difficulties of serotyping, primarily in antiserum production and quality control, can be overcome with modern molecular methods. We developed a DNA-based assay targeting the genes encoding the flagellar antigens (fliC and fljB) of the Kauffmann-White serotyping scheme. Fifteen H antigens (H:a, -b, -c, -d, -d/j, -e,h, -i, -k, -r, -y, -z, -z(10), -z(29), -z(35), and -z(6)), 5 complex major antigens (H:G, -EN, -Z4, -1, and -L) and 16 complex secondary antigens (H:2, -5, -6, -7, -f, -m/g,m, -m/m,t, -p, -s, -t/m,t, -v, -x, -z(15), -z(24), -z(28), and -z(51)) were targeted in the assay. DNA probes targeting these antigens were designed and evaluated on 500 isolates tested in parallel with traditional serotyping methods. The assay correctly identified 461 (92.2%) isolates based on the 36 antigens detected in the assay. Among the isolates considered correctly identified, 47 (9.4%) were partially serotyped because probes corresponding to some antigens in the strains were not in the assay, and 13 (2.6%) were monophasic or nonmotile strains that possessed flagellar antigen genes that were not expressed but were detected in the assay. The 39 (7.8%) strains that were not correctly identified possessed an antigen that should have been detected by the assay but was not. Apparent false-negative results may be attributed to allelic divergence. The molecular assay provided results that paralleled traditional methods with a much greater throughput, while maintaining the integrity of the Kauffmann-White serotyping scheme, thus providing backwards-compatible epidemiologic data. This assay should greatly enhance the ability of clinical and public health laboratories to serotype Salmonella.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana/métodos , Análisis por Micromatrices , Microesferas , Tipificación Molecular/métodos , Salmonella/clasificación , ADN Bacteriano , Humanos , Datos de Secuencia Molecular , Salmonella/genética , Análisis de Secuencia de ADN
5.
Microb Genom ; 4(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30052174

RESUMEN

Salmonella enterica serovar Montevideo has been linked to recent foodborne illness outbreaks resulting from contamination of products such as fruits, vegetables, seeds and spices. Studies have shown that Montevideo also is frequently associated with healthy cattle and can be isolated from ground beef, yet human salmonellosis outbreaks of Montevideo associated with ground beef contamination are rare. This disparity fuelled our interest in characterizing the genomic differences between Montevideo strains isolated from healthy cattle and beef products, and those isolated from human patients and outbreak sources. To that end, we sequenced 13 Montevideo strains to completion, producing high-quality genome assemblies of isolates from human patients (n=8) or from healthy cattle at slaughter (n=5). Comparative analysis of sequence data from this study and publicly available sequences (n=72) shows that Montevideo falls into four previously established clades, differentially occupied by cattle and human strains. The results of these analyses reveal differences in metabolic islands, environmental adhesion determinants and virulence factors within each clade, and suggest explanations for the infrequent association between bovine isolates and human illnesses.


Asunto(s)
Genómica , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Serogrupo , Factores de Virulencia/genética , Animales , Bovinos , Brotes de Enfermedades , Ecosistema , Humanos , Intoxicación Alimentaria por Salmonella/epidemiología , Intoxicación Alimentaria por Salmonella/genética , Intoxicación Alimentaria por Salmonella/microbiología , Salmonella enterica/aislamiento & purificación , Especificidad de la Especie , Uruguay/epidemiología
6.
Genome Announc ; 4(1)2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26847891

RESUMEN

Salmonella enterica spp. are a diverse group of bacteria with a wide range of virulence potential. To facilitate genome comparisons across this virulence spectrum, we present eight complete closed genome sequences of four S. enterica serotypes (Anatum, Montevideo, Typhimurium, and Newport), isolated from various cattle samples and from humans.

7.
Genome Announc ; 4(3)2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27257192

RESUMEN

Salmonella enterica is an important pathogen transmitted by numerous vectors. Genomic comparisons of Salmonella strains from disparate hosts have the potential to further our understanding of mechanisms underlying host specificities and virulence. Here, we present the closed genome and plasmid sequences of 10 Salmonella enterica subsp. enterica serovar Anatum isolates from bovine and human sources.

8.
Genome Announc ; 4(6)2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27811097

RESUMEN

Salmonella enterica is a leading cause of enterocolitis for humans and animals. S. enterica subsp. enterica serovar Typhimurium infects a broad range of hosts. To facilitate genomic comparisons among isolates from different sources, we present the complete genome sequences of 10 S Typhimurium strains, 5 each isolated from human and bovine sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA