RESUMEN
Worldwide, synthetic compounds are used for both in-office and at-home dental care. They are a valuable resource for both prophylactic and curative treatments for various dental problems, such as tooth decay, periodontal diseases, and many more. They are typically preferred due to their broad range of actions and ability to produce targeted, rapid, and long-lasting effects. Using a 0.12% chlorhexidine mouthwash is capable of reducing the plaque index from 47.69% to 2.37% and the bleeding index from 32.93% to 6.28% after just 2 weeks. Mouthwash with 0.1% OCT is also highly effective, as it significantly lowered the median plaque index and salivary bacterial counts in 152 patients in 5 days compared to a control group (p < 0.0001), while also reducing the gingival index (p < 0.001). When povidone-iodine was used as an irrigant during the surgical removal of mandibular third molars in 105 patients, it resulted in notably lower pain scores after 2 days compared to a control group (4.57 ± 0.60 vs. 5.71 ± 0.45). Sodium hypochlorite is excellent for root canal disinfection, as irrigating with 1% NaOCl completely eliminated the bacteria from canals in 65% patients. A 0.05% CPC mouthwash proved effective for perioperative patient care, significantly decreasing gingival bleeding (p < 0.001) and suppressing Streptococcus levels even one week post-surgery. Lastly, a 6% H2O2 paint-on varnish and 6% H2O2 tray formulations successfully bleached the teeth of 40 patients, maintaining a noticeably whiter appearance up to the 6-month follow-up, with significant color differences from the baseline (p < 0.005). Synthetic compounds have a large research base, which also provides a greater awareness of their mechanism of action and potential adverse effects. For a better understanding of how they work, several methods and assays are performed. These are protocolary techniques through which a compound's efficacy and toxicity are established.
Asunto(s)
Antisépticos Bucales , Humanos , Antisépticos Bucales/farmacología , Odontología , Clorhexidina/farmacología , Clorhexidina/uso terapéuticoRESUMEN
Natural compounds have been used since the earliest civilizations and remain, to this day, a safer alternative for treating various dental problems. These present antimicrobial, anti-inflammatory, antioxidant, analgesic, and antimutagenic effects, making them useful in the prophylactic and curative treatment of various oral diseases such as infections, gingivitis, periodontitis, and even cancer. Due to the high incidence of unpleasant adverse reactions to synthetic compounds, natural products tend to gradually replace conventional treatment, as they can be just as potent and cause fewer, milder adverse effects. Researchers use several methods to measure the effectiveness and safety profile of these compounds, and employing standard techniques also contributes to progress across all medical disciplines.
RESUMEN
Malocclusion is a global health problem, mainly affecting children and adolescents. For this reason, orthodontic treatment must be, on the one hand, safe, non-toxic, and effective and, on the other hand, it must have the best possible esthetic profile. Thus, the use of orthodontic appliances is addressed to all age groups, including young children, for a long period of time, which is why their safety profile is a matter of real interest. For this reason, the purpose of the present study was to evaluate the safety and biocompatibility of an acrylic removable orthodontic appliance made of polymethylmethacrylate and stainless steel alloy made by our team of researchers. To verify the biocompatibility of the medical device, it was immersed in artificial saliva with three different pHs (3, 7, and 10) for a period of ten days. Subsequently, the three types of saliva were tested on human keratinocytes (HaCaT cell line) in terms of viability and modification of cell morphology. Finally, the use of 3D reconstructed human epidermis verified the cytotoxic and irritating potential of the medical device, thus providing relevant information regarding its biocompatibility. The results revealed that by maintaining the orthodontic device in the saliva there is no release of substances with a toxic effect on the human keratinocytes and on the 3D reconstructed human epidermis. There were also no significant changes in cell morphology. In conclusion, it is suggested that the acrylic removable appliance has a safety profile recommended for in vivo use.