Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Neurosci ; 41(42): 8673-8685, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34380759

RESUMEN

Neuronal proton-gated acid-sensing ion channels (ASICs) participate in the detection of tissue acidosis, a phenomenon often encountered in painful pathologic diseases. Such conditions often involve in parallel the activation of various signaling pathways such as mitogen activated protein kinases (MAPKs) that ultimately leads to phenotype modifications of sensory neurons. Here, we identify one member of the MAPKs, c-Jun N-terminal kinase (JNK), as a new post-translational positive regulator of ASICs in rodent sensory neurons. Recombinant H+-induced ASIC currents in HEK293 cells are potently inhibited within minutes by the JNK inhibitor SP600125 in a subunit-dependent manner, targeting both rodent and human ASIC1b and ASIC3 subunits (except mouse ASIC3). The regulation by JNK of recombinant ASIC1b- and ASIC3-containing channels (homomers and heteromers) is lost on mutation of a putative phosphorylation site within the intracellular N- and the C-terminal domain of the ASIC1b and ASIC3 subunit, respectively. Moreover, short-term JNK activation regulates the activity of native ASIC1b- and ASIC3-containing channels in rodent sensory neurons and is involved in the rapid potentiation of ASIC activity by the proinflammatory cytokine TNFα. Local JNK activation in vivo in mice induces a short-term potentiation of the acid-induced cutaneous pain in inflammatory conditions that is partially blocked by the ASIC1-specific inhibitor mambalgin-1. Collectively, our data identify pain-related channels as novel physiological JNK substrates in nociceptive neurons and propose JNK-dependent phosphorylation as a fast post-translational mechanism of regulation of sensory-neuron-expressed ASIC1b- and ASIC3-containing channels that may contribute to peripheral sensitization and pain hypersensitivity.SIGNIFICANCE STATEMENT ASICs are a class of excitatory cation channels critical for the detection of tissue acidosis, which is a hallmark of several painful diseases. Previous work in sensory neurons has shown that ASICs containing the ASIC3 or the ASIC1b subunit are important players in different pain models. We combine here functional and pharmacological in vitro and in vivo approaches to demonstrate that the MAP Kinase JNK is a potent post-translational positive regulator, probably via direct phosphorylation, of rodent and human ASIC1b- and ASIC3-containing channels. This JNK-dependent, fast post-translational mechanism of regulation of sensory-neuron-expressed ASICs may contribute to peripheral sensitization and pain hypersensitivity. These data also identify pain-related channels as direct downstream effectors of JNK in nociceptors.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Dolor/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Canales Iónicos Sensibles al Ácido/genética , Secuencia de Aminoácidos , Animales , Anisomicina/farmacología , Antracenos/farmacología , Antracenos/uso terapéutico , Células Cultivadas , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Dolor/tratamiento farmacológico , Dolor/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Wistar
2.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34830172

RESUMEN

The voltage-gated K+ channels Kv3.1 display fast activation and deactivation kinetics and are known to have a crucial contribution to the fast-spiking phenotype of certain neurons. AahG50, as a natural product extracted from Androctonus australis hector venom, inhibits selectively Kv3.1 channels. In the present study, we focused on the biochemical and pharmacological characterization of the component in AahG50 scorpion venom that potently and selectively blocks the Kv3.1 channels. We used a combined optimization through advanced biochemical purification and patch-clamp screening steps to characterize the peptide in AahG50 active on Kv3.1 channels. We described the inhibitory effect of a toxin on Kv3.1 unitary current in black lipid bilayers. In silico, docking experiments are used to study the molecular details of the binding. We identified the first scorpion venom peptide inhibiting Kv3.1 current at 170 nM. This toxin is the alpha-KTx 15.1, which occludes the Kv3.1 channel pore by means of the lysine 27 lateral chain. This study highlights, for the first time, the modulation of the Kv3.1 by alpha-KTx 15.1, which could be an interesting starting compound for developing therapeutic biomolecules against Kv3.1-associated diseases.


Asunto(s)
Simulación del Acoplamiento Molecular , Bloqueadores de los Canales de Potasio/química , Venenos de Escorpión/química , Canales de Potasio Shaw , Animales , Humanos , Escorpiones/química , Canales de Potasio Shaw/antagonistas & inhibidores , Canales de Potasio Shaw/química , Xenopus laevis
3.
Nature ; 490(7421): 552-5, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23034652

RESUMEN

Polypeptide toxins have played a central part in understanding physiological and physiopathological functions of ion channels. In the field of pain, they led to important advances in basic research and even to clinical applications. Acid-sensing ion channels (ASICs) are generally considered principal players in the pain pathway, including in humans. A snake toxin activating peripheral ASICs in nociceptive neurons has been recently shown to evoke pain. Here we show that a new class of three-finger peptides from another snake, the black mamba, is able to abolish pain through inhibition of ASICs expressed either in central or peripheral neurons. These peptides, which we call mambalgins, are not toxic in mice but show a potent analgesic effect upon central and peripheral injection that can be as strong as morphine. This effect is, however, resistant to naloxone, and mambalgins cause much less tolerance than morphine and no respiratory distress. Pharmacological inhibition by mambalgins combined with the use of knockdown and knockout animals indicates that blockade of heteromeric channels made of ASIC1a and ASIC2a subunits in central neurons and of ASIC1b-containing channels in nociceptors is involved in the analgesic effect of mambalgins. These findings identify new potential therapeutic targets for pain and introduce natural peptides that block them to produce a potent analgesia.


Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Canales Iónicos Sensibles al Ácido/metabolismo , Analgésicos/farmacología , Venenos Elapídicos/farmacología , Dolor/tratamiento farmacológico , Péptidos/farmacología , Péptidos/uso terapéutico , Bloqueadores del Canal Iónico Sensible al Ácido/química , Bloqueadores del Canal Iónico Sensible al Ácido/uso terapéutico , Canales Iónicos Sensibles al Ácido/clasificación , Canales Iónicos Sensibles al Ácido/genética , Analgésicos/efectos adversos , Analgésicos/química , Analgésicos/uso terapéutico , Animales , Tolerancia a Medicamentos , Venenos Elapídicos/administración & dosificación , Venenos Elapídicos/química , Venenos Elapídicos/uso terapéutico , Inyecciones Espinales , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Morfina/efectos adversos , Morfina/farmacología , Naloxona/farmacología , Nociceptores/química , Nociceptores/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Dolor/metabolismo , Péptidos/administración & dosificación , Péptidos/química , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Ratas , Insuficiencia Respiratoria/inducido químicamente , Xenopus laevis
4.
J Biol Chem ; 291(6): 2616-29, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26680001

RESUMEN

Mambalgins are peptides isolated from mamba venom that specifically inhibit a set of acid-sensing ion channels (ASICs) to relieve pain. We show here the first full stepwise solid phase peptide synthesis of mambalgin-1 and confirm the biological activity of the synthetic toxin both in vitro and in vivo. We also report the determination of its three-dimensional crystal structure showing differences with previously described NMR structures. Finally, the functional domain by which the toxin inhibits ASIC1a channels was identified in its loop II and more precisely in the face containing Phe-27, Leu-32, and Leu-34 residues. Moreover, proximity between Leu-32 in mambalgin-1 and Phe-350 in rASIC1a was proposed from double mutant cycle analysis. These data provide information on the structure and on the pharmacophore for ASIC channel inhibition by mambalgins that could have therapeutic value against pain and probably other neurological disorders.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Venenos Elapídicos , Péptidos , Canales Iónicos Sensibles al Ácido/genética , Animales , Venenos Elapídicos/síntesis química , Venenos Elapídicos/química , Venenos Elapídicos/farmacología , Resonancia Magnética Nuclear Biomolecular , Oocitos , Péptidos/síntesis química , Péptidos/química , Péptidos/farmacología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Xenopus laevis
5.
J Biol Chem ; 289(19): 13363-73, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24695733

RESUMEN

Acid-sensing ion channels (ASICs) are neuronal proton-gated cation channels associated with nociception, fear, depression, seizure, and neuronal degeneration, suggesting roles in pain and neurological and psychiatric disorders. We have recently discovered black mamba venom peptides called mambalgin-1 and mambalgin-2, which are new three-finger toxins that specifically inhibit with the same pharmacological profile ASIC channels to exert strong analgesic effects in vivo. We now combined bioinformatics and functional approaches to uncover the molecular mechanism of channel inhibition by the mambalgin-2 pain-relieving peptide. Mambalgin-2 binds mainly in a region of ASIC1a involving the upper part of the thumb domain (residues Asp-349 and Phe-350), the palm domain of an adjacent subunit, and the ß-ball domain (residues Arg-190, Asp-258, and Gln-259). This region overlaps with the acidic pocket (pH sensor) of the channel. The peptide exerts both stimulatory and inhibitory effects on ASIC1a, and we propose a model where mambalgin-2 traps the channel in a closed conformation by precluding the conformational change of the palm and ß-ball domains that follows proton activation. These data help to understand inhibition by mambalgins and provide clues for the development of new optimized blockers of ASIC channels.


Asunto(s)
Canales Iónicos Sensibles al Ácido/química , Analgésicos/química , Venenos Elapídicos/química , Simulación del Acoplamiento Molecular , Péptidos/química , Animales , Sitios de Unión , Estructura Terciaria de Proteína , Ratas , Relación Estructura-Actividad
6.
Toxins (Basel) ; 16(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38535813

RESUMEN

The French Society of Toxinology (SFET), which celebrated its 30th anniversary this year, organized its 29th annual Meeting (RT29), shared by 87 participants, on 30 November-1 December 2023. The RT29 main theme, "Toxins: From the Wild to the Lab", focused on research in the field of animal venoms and animal, bacterial, fungal, or plant toxins, from their discovery in nature to their study in the laboratory. The exploration of the functions of toxins, their structures, their molecular or cellular ligands, their mode of action, and their potential therapeutic applications were emphasized during oral communications and posters through three sessions, of which each was dedicated to a secondary theme. A fourth, "miscellaneous" session allowed participants to present recent out-of-theme works. The abstracts of nine invited and 15 selected lectures, those of 24 posters, and the names of the Best Oral Communication and Best Poster awardees, are presented in this report.


Asunto(s)
Toxinas Biológicas , Animales , Humanos , Laboratorios
7.
Nat Commun ; 15(1): 54, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167790

RESUMEN

L-type voltage-gated calcium channels are involved in multiple physiological functions. Currently available antagonists do not discriminate between L-type channel isoforms. Importantly, no selective blocker is available to dissect the role of L-type isoforms Cav1.2 and Cav1.3 that are concomitantly co-expressed in the heart, neuroendocrine and neuronal cells. Here we show that calciseptine, a snake toxin purified from mamba venom, selectively blocks Cav1.2 -mediated L-type calcium currents (ICaL) at concentrations leaving Cav1.3-mediated ICaL unaffected in both native cardiac myocytes and HEK-293T cells expressing recombinant Cav1.2 and Cav1.3 channels. Functionally, calciseptine potently inhibits cardiac contraction without altering the pacemaker activity in sino-atrial node cells, underscoring differential roles of Cav1.2- and Cav1.3 in cardiac contractility and automaticity. In summary, calciseptine is a selective L-type Cav1.2 Ca2+ channel blocker and should be a valuable tool to dissect the role of these L-channel isoforms.


Asunto(s)
Canales de Calcio Tipo L , Dendroaspis , Animales , Canales de Calcio Tipo L/fisiología , Dendroaspis/metabolismo , Miocitos Cardíacos/metabolismo , Isoformas de Proteínas , Calcio/metabolismo
8.
EMBO J ; 28(9): 1308-18, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19279663

RESUMEN

The sensation of cold or heat depends on the activation of specific nerve endings in the skin. This involves heat- and cold-sensitive excitatory transient receptor potential (TRP) channels. However, we show here that the mechano-gated and highly temperature-sensitive potassium channels of the TREK/TRAAK family, which normally work as silencers of the excitatory channels, are also implicated. They are important for the definition of temperature thresholds and temperature ranges in which excitation of nociceptor takes place and for the intensity of excitation when it occurs. They are expressed with thermo-TRP channels in sensory neurons. TRAAK and TREK-1 channels control pain produced by mechanical stimulation and both heat and cold pain perception in mice. Expression of TRAAK alone or in association with TREK-1 controls heat responses of both capsaicin-sensitive and capsaicin-insensitive sensory neurons. Together TREK-1 and TRAAK channels are important regulators of nociceptor activation by cold, particularly in the nociceptor population that is not activated by menthol.


Asunto(s)
Frío , Calor , Canales de Potasio de Dominio Poro en Tándem/fisiología , Canales de Potasio/fisiología , Sensación Térmica/fisiología , Animales , Células Cultivadas , Electrofisiología , Ganglios Espinales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Dolor , Canales de Potasio/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Sensación Térmica/genética
9.
Toxins (Basel) ; 15(2)2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36828440

RESUMEN

The French Society of Toxinology (SFET) organized its 28th annual meeting on 28-29 November 2022 (RT28). The central theme of this meeting was "Toxins: What's up, Doc?", emphasizing the latest findings on animal, bacterial, algal, plant and fungal toxins through sessions dedicated to deep learning, toxin tracking and toxinomic advances, shared by ca. 80 participants. The abstracts of the 10 invited and 11 selected lectures and 15 posters, along with the names of the Best Oral Communication and Best Poster awardees, are presented in this report.


Asunto(s)
Micotoxinas , Toxinas Biológicas , Animales
10.
EMBO J ; 27(22): 3047-55, 2008 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-18923424

RESUMEN

Acid-sensing ion channels (ASICs) are cationic channels activated by extracellular acidosis that are expressed in both central and peripheral nervous systems. Although peripheral ASICs seem to be natural sensors of acidic pain (e.g., in inflammation, ischaemia, lesions or tumours), a direct demonstration is still lacking. We show that approximately 60% of rat cutaneous sensory neurons express ASIC3-like currents. Native as well as recombinant ASIC3 respond synergistically to three different inflammatory signals that are slight acidifications (approximately pH 7.0), hypertonicity and arachidonic acid (AA). Moderate pH, alone or in combination with hypertonicity and AA, increases nociceptors excitability and produces pain suppressed by the toxin APETx2, a specific blocker of ASIC3. Both APETx2 and the in vivo knockdown of ASIC3 with a specific siRNA also have potent analgesic effects against primary inflammation-induced hyperalgesia in rat. Peripheral ASIC3 channels are thus essential sensors of acidic pain and integrators of molecular signals produced during inflammation where they contribute to primary hyperalgesia.


Asunto(s)
Inflamación/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Dolor/metabolismo , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Acidosis/metabolismo , Potenciales de Acción/fisiología , Animales , Ácido Araquidónico/farmacología , Células Cultivadas , Venenos de Cnidarios/metabolismo , Ganglios Espinales/citología , Calor/efectos adversos , Humanos , Soluciones Hipertónicas , Inflamación/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo , Dimensión del Dolor , Péptidos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Piel/efectos de los fármacos , Piel/inervación , Canales de Sodio/genética , Venenos de Araña/metabolismo
11.
Toxins (Basel) ; 14(10)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36287977

RESUMEN

Acid-sensing ion channels (ASICs) are voltage-independent H+-gated cation channels largely expressed in the nervous system of rodents and humans. At least six isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) associate into homotrimers or heterotrimers to form functional channels with highly pH-dependent gating properties. This review provides an update on the pharmacological profiles of animal peptide toxins targeting ASICs, including PcTx1 from tarantula and related spider toxins, APETx2 and APETx-like peptides from sea anemone, and mambalgin from snake, as well as the dimeric protein snake toxin MitTx that have all been instrumental to understanding the structure and the pH-dependent gating of rodent and human cloned ASICs and to study the physiological and pathological roles of native ASICs in vitro and in vivo. ASICs are expressed all along the pain pathways and the pharmacological data clearly support a role for these channels in pain. ASIC-targeting peptide toxins interfere with ASIC gating by complex and pH-dependent mechanisms sometimes leading to opposite effects. However, these dual pH-dependent effects of ASIC-inhibiting toxins (PcTx1, mambalgin and APETx2) are fully compatible with, and even support, their analgesic effects in vivo, both in the central and the peripheral nervous system, as well as potential effects in humans.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Venenos de Araña , Animales , Humanos , Roedores/metabolismo , Venenos de Araña/química , Péptidos/química , Analgésicos/farmacología , Dolor/tratamiento farmacológico
12.
Toxins (Basel) ; 14(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35202137

RESUMEN

The French Society of Toxinology (SFET) organized its 27th annual meeting on 9-10 December 2021 as a virtual meeting (e-RT27). The central theme of this meeting was "Toxins: Mr Hyde or Dr Jekyll?", emphasizing the latest findings on plant, fungal, algal, animal and bacterial toxins during 10 lectures, 15 oral communications (shorter lectures) and 20 posters shared by ca. 80 participants. The abstracts of lectures and posters, as well as the winners of the best oral communication and poster awards, are presented in this report.


Asunto(s)
Toxinas Biológicas , Animales , Distinciones y Premios , Humanos , Sociedades Científicas , Toxinas Biológicas/farmacología , Toxinas Biológicas/uso terapéutico , Toxinas Biológicas/toxicidad
13.
Nat Neurosci ; 10(8): 943-5, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17632507

RESUMEN

Psalmotoxin 1, a peptide extracted from the South American tarantula Psalmopoeus cambridgei, has very potent analgesic properties against thermal, mechanical, chemical, inflammatory and neuropathic pain in rodents. It exerts its action by blocking acid-sensing ion channel 1a, and this blockade results in an activation of the endogenous enkephalin pathway. The analgesic properties of the peptide are suppressed by antagonists of the mu and delta-opioid receptors and are lost in Penk1-/- mice.


Asunto(s)
Analgésicos/uso terapéutico , Encefalinas/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Dolor/tratamiento farmacológico , Canales de Sodio/fisiología , Venenos de Araña/uso terapéutico , Canales Iónicos Sensibles al Ácido , Animales , Área Bajo la Curva , Conducta Animal , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Encefalinas/deficiencia , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Morfina/administración & dosificación , Naloxona/administración & dosificación , Naltrexona/administración & dosificación , Antagonistas de Narcóticos/administración & dosificación , Proteínas del Tejido Nervioso/deficiencia , Neuronas/efectos de los fármacos , Neuronas/fisiología , Dimensión del Dolor/métodos , Péptidos , Precursores de Proteínas/deficiencia , Tiempo de Reacción/efectos de los fármacos , Canales de Sodio/deficiencia , Médula Espinal/patología , Factores de Tiempo
14.
Artículo en Inglés | MEDLINE | ID: mdl-34925480

RESUMEN

Pain is a common symptom induced during envenomation by spiders and scorpions. Toxins isolated from their venom have become essential tools for studying the functioning and physiopathological role of ion channels, as they modulate their activity. In particular, toxins that induce pain relief effects can serve as a molecular basis for the development of future analgesics in humans. This review provides a summary of the different scorpion and spider toxins that directly interact with pain-related ion channels, with inhibitory or stimulatory effects. Some of these toxins were shown to affect pain modalities in different animal models providing information on the role played by these channels in the pain process. The close interaction of certain gating-modifier toxins with membrane phospholipids close to ion channels is examined along with molecular approaches to improve selectivity, affinity or bioavailability in vivo for therapeutic purposes.

15.
Toxins (Basel) ; 12(1)2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947870

RESUMEN

This 26th edition of the annual Meeting on Toxinology (RT26) of the SFET (http://sfet.asso.fr/international) was held at the Institut Pasteur of Paris on 4-5 December 2019 [...].

16.
Prog Mol Subcell Biol ; 46: 99-122, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19184586

RESUMEN

The great diversity of K(+) channels and their wide distribution in many tissues are associated with important functions in cardiac and neuronal excitability that are now better understood thanks to the discovery of animal toxins. During the past few decades, sea anemones have provided a variety of toxins acting on voltage-sensitive sodium and, more recently, potassium channels. Currently there are three major structural groups of sea anemone K(+) channel (SAK) toxins that have been characterized. Radioligand binding and electrophysiological experiments revealed that each group contains peptides displaying selective activities for different subfamilies of K(+) channels. Short (35-37 amino acids) peptides in the group I display pore blocking effects on Kv1 channels. Molecular interactions of SAK-I toxins, important for activity and binding on Kv1 channels, implicate a spot of three conserved amino acid residues (Ser, Lys, Tyr) surrounded by other less conserved residues. Long (58-59 amino acids) SAK-II peptides display both enzymatic and K(+) channel inhibitory activities. Medium size (42-43 amino acid) SAK-III peptides are gating modifiers which interact either with cardiac HERG or Kv3 channels by altering their voltage-dependent properties. SAK-III toxins bind to the S3C region in the outer vestibule of Kv channels. Sea anemones have proven to be a rich source of pharmacological tools, and some of the SAK toxins are now useful drugs for the diagnosis and treatment of autoimmune diseases.


Asunto(s)
Toxinas Marinas/toxicidad , Canales de Potasio/fisiología , Secuencia de Aminoácidos , Animales , Venenos de Cnidarios/química , Venenos de Cnidarios/toxicidad , Humanos , Toxinas Marinas/química , Modelos Moleculares , Datos de Secuencia Molecular , Canales de Potasio/efectos de los fármacos , Conformación Proteica , Anémonas de Mar
17.
Toxins (Basel) ; 11(6)2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234412

RESUMEN

Phlotoxin-1 (PhlTx1) is a peptide previously identified in tarantula venom (Phlogius species) that belongs to the inhibitory cysteine-knot (ICK) toxin family. Like many ICK-based spider toxins, the synthesis of PhlTx1 appears particularly challenging, mostly for obtaining appropriate folding and concomitant suitable disulfide bridge formation. Herein, we describe a procedure for the chemical synthesis and the directed sequential disulfide bridge formation of PhlTx1 that allows for a straightforward production of this challenging peptide. We also performed extensive functional testing of PhlTx1 on 31 ion channel types and identified the voltage-gated sodium (Nav) channel Nav1.7 as the main target of this toxin. Moreover, we compared PhlTx1 activity to 10 other spider toxin activities on an automated patch-clamp system with Chinese Hamster Ovary (CHO) cells expressing human Nav1.7. Performing these analyses in reproducible conditions allowed for classification according to the potency of the best natural Nav1.7 peptide blockers. Finally, subsequent in vivo testing revealed that intrathecal injection of PhlTx1 reduces the response of mice to formalin in both the acute pain and inflammation phase without signs of neurotoxicity. PhlTx1 is thus an interesting toxin to investigate Nav1.7 involvement in cellular excitability and pain.


Asunto(s)
Analgésicos/aislamiento & purificación , Péptidos/aislamiento & purificación , Venenos de Araña/química , Bloqueadores del Canal de Sodio Activado por Voltaje/aislamiento & purificación , Secuencia de Aminoácidos , Analgésicos/química , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Células CHO , Cricetulus , Femenino , Formaldehído , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.7/fisiología , Oocitos , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Péptidos/química , Péptidos/farmacología , Péptidos/uso terapéutico , Pliegue de Proteína , Arañas , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Xenopus laevis
18.
Br J Pharmacol ; 175(21): 4154-4166, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30079481

RESUMEN

BACKGROUND AND PURPOSE: Acid-sensing ion channels (ASICs) are neuronal proton sensors emerging as potential therapeutic targets in pain of the orofacial region. Amiloride, a non-specific ASIC blocker, has been shown to exert beneficial effects in animal models of migraine and in patients. We explored the involvement of the ASIC1-subtype in cutaneous allodynia, a hallmark of migraine affecting cephalic and extra-cephalic regions in about 70% of migrainers. EXPERIMENTAL APPROACH: We investigated the effects of systemic injections of amiloride and mambalgin-1, a specific inhibitor of ASIC1a- and ASIC1b-containing channels, on cephalic and extra-cephalic mechanical sensitivity in a rodent model of acute and chronic migraine induced by i.p. injections of isosorbide dinitrate. KEY RESULTS: I.v. injections of these inhibitors reversed cephalic and extra-cephalic acute cutaneous mechanical allodynia in rats, a single injection inducing a delay in the subsequent establishment of chronic allodynia. Both mambalgin-1 and amiloride also reversed established chronic allodynia. The anti-allodynic effects of mambalgin-1 were not altered in ASIC1a-knockout mice, showing the ASIC1a subtype is not involved in these effects which were comparable to those of the anti-migraine drug sumatriptan and of the preventive drug topiramate on acute and chronic allodynia respectively. A single daily injection of mambalgin-1 also had a significant preventive effect on allodynia chronification. CONCLUSIONS AND IMPLICATIONS: These pharmacological data support the involvement of peripheral ASIC1-containing channels in migraine cutaneous allodynia as well as in its chronification. They highlight the therapeutic potential of ASIC1 inhibitors as both an acute and prophylactic treatment for migraine.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Amilorida/farmacología , Venenos Elapídicos/farmacología , Hiperalgesia/tratamiento farmacológico , Trastornos Migrañosos/tratamiento farmacológico , Péptidos/farmacología , Amilorida/administración & dosificación , Animales , Modelos Animales de Enfermedad , Venenos Elapídicos/administración & dosificación , Hiperalgesia/metabolismo , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos C57BL , Trastornos Migrañosos/metabolismo , Péptidos/administración & dosificación , Ratas , Ratas Sprague-Dawley
19.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484776

RESUMEN

Abstract Pain is a common symptom induced during envenomation by spiders and scorpions. Toxins isolated from their venom have become essential tools for studying the functioning and physiopathological role of ion channels, as they modulate their activity. In particular, toxins that induce pain relief effects can serve as a molecular basis for the development of future analgesics in humans. This review provides a summary of the different scorpion and spider toxins that directly interact with pain-related ion channels, with inhibitory or stimulatory effects. Some of these toxins were shown to affect pain modalities in different animal models providing information on the role played by these channels in the pain process. The close interaction of certain gating-modifier toxins with membrane phospholipids close to ion channels is examined along with molecular approaches to improve selectivity, affinity or bioavailability in vivo for therapeutic purposes.

20.
J. venom. anim. toxins incl. trop. dis ; 27: e20210026, 2021. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1351023

RESUMEN

Pain is a common symptom induced during envenomation by spiders and scorpions. Toxins isolated from their venom have become essential tools for studying the functioning and physiopathological role of ion channels, as they modulate their activity. In particular, toxins that induce pain relief effects can serve as a molecular basis for the development of future analgesics in humans. This review provides a summary of the different scorpion and spider toxins that directly interact with pain-related ion channels, with inhibitory or stimulatory effects. Some of these toxins were shown to affect pain modalities in different animal models providing information on the role played by these channels in the pain process. The close interaction of certain gating-modifier toxins with membrane phospholipids close to ion channels is examined along with molecular approaches to improve selectivity, affinity or bioavailability in vivo for therapeutic purposes.(AU)


Asunto(s)
Animales , Dolor , Escorpiones , Venenos de Araña , Modelos Animales , Canales Iónicos , Fosfolípidos , Analgésicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA