Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322331

RESUMEN

The central nervous system (CNS) is the most complex structure in the body, consisting of multiple cell types with distinct morphology and function. Development of the neuronal circuit and its function rely on a continuous crosstalk between neurons and non-neural cells. It has been widely accepted that extracellular vesicles (EVs), mainly exosomes, are effective entities responsible for intercellular CNS communication. They contain membrane and cytoplasmic proteins, lipids, non-coding RNAs, microRNAs and mRNAs. Their cargo modulates gene and protein expression in recipient cells. Several lines of evidence indicate that EVs play a role in modifying signal transduction with subsequent physiological changes in neurogenesis, gliogenesis, synaptogenesis and network circuit formation and activity, as well as synaptic pruning and myelination. Several studies demonstrate that neural and non-neural EVs play an important role in physiological and pathological neurodevelopment. The present review discusses the role of EVs in various neurodevelopmental disorders and the prospects of using EVs as disease biomarkers and therapeutics.


Asunto(s)
Enfermedades del Sistema Nervioso Central/metabolismo , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Animales , Humanos , Neuronas/metabolismo
2.
Adv Biochem Eng Biotechnol ; 171: 189-224, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31740987

RESUMEN

In recent years, human pluripotent stem (hPS) cells have started to emerge as a potential tool with application in fields such as regenerative medicine, disease modeling, and drug screening. In particular, the ability to differentiate human-induced pluripotent stem (hiPS) cells into different cell types and to mimic structures and functions of a specific target organ, resourcing to organoid technology, has introduced novel model systems for disease recapitulation while offering a powerful tool to provide a faster and reproducible approach in the process of drug discovery. All these technologies are expected to improve the overall quality of life of the humankind. Here, we highlight the main applications of hiPS cells and the main challenges associated with the translation of hPS cell derivatives into clinical settings and other biomedical applications, such as the costs of the process and the ability to mimic the complexity of the in vivo systems. Moreover, we focus on the bioprocessing approaches that can be applied towards the production of high numbers of cells as well as their efficient differentiation into the final product and further purification.


Asunto(s)
Células Madre Pluripotentes , Diferenciación Celular , Humanos , Organoides , Calidad de Vida , Medicina Regenerativa
3.
Toxicol Lett ; 294: 51-60, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29775723

RESUMEN

Stem cell's unique properties confer them a multitude of potential applications in the fields of cellular therapy, disease modelling and drug screening fields. In particular, the ability to differentiate neural progenitors (NP) from human induced pluripotent stem cells (hiPSCs) using chemically-defined conditions provides an opportunity to create a simple and straightforward culture platform for application in these fields. Here, we demonstrated that hiPSCs are capable of undergoing neural commitment inside microwells, forming characteristic neural structures resembling neural rosettes and further give rise to glial and neuronal cells. Furthermore, this platform can be applied towards the study of the effect of neurotoxic molecules that impair normal embryonic development. As a proof of concept, the neural teratogenic potential of the antiepileptic drug valproic acid (VPA) was analyzed. It was verified that exposure to VPA, close to typical dosage values (0.3 to 0.75 mM), led to a prevalence of NP structures over neuronal differentiation, as confirmed by analysis of the expression of neural cell adhesion molecule, as well as neural rosette number and morphology assessment. The methodology proposed herein for the generation and neural differentiation of hiPSC aggregates can potentially complement current toxicity tests such as the humanized embryonic stem cell test for the detection of teratogenic compounds that can interfere with normal embryonic development.


Asunto(s)
Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Teratógenos/toxicidad , Pruebas de Toxicidad , Xenobióticos/toxicidad , Anticonvulsivantes/efectos adversos , Biomarcadores/metabolismo , Agregación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Cinética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Prueba de Estudio Conceptual , Ácido Valproico/efectos adversos
4.
Biotechnol J ; 11(12): 1628-1638, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27754603

RESUMEN

The demand of high cell numbers for applications in cellular therapies and drug screening requires the development of scalable platforms capable to generating highly pure populations of tissue-specific cells from human pluripotent stem cells. In this work, we describe the scaling-up of an aggregate-based culture system for neural induction of human induced pluripotent stem cells (hiPSCs) under chemically-defined conditions. A combination of non-enzymatic dissociation and rotary agitation was successfully used to produce homogeneous populations of hiPSC aggregates with an optimal (140 µm) and narrow distribution of diameters (coefficient of variation of 21.6%). Scalable neural commitment of hiPSCs as 3D aggregates was performed in 50 mL spinner flasks, and the process was optimized using a factorial design approach, involving parameters such as agitation rate and seeding density. We were able to produce neural progenitor cell cultures, that at the end of a 6-day neural induction process contained less than 3% of Oct4-positive cells and that, after replating, retained more than 60% of Pax6-positive neural cells. The results here presented should set the stage for the future generation of a clinically relevant number of human neural progenitors for transplantation and other biomedical applications using controlled, automated and reproducible large-scale bioreactor culture systems.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Benzamidas/farmacología , Biomarcadores/metabolismo , Recuento de Células , Técnicas de Cultivo de Célula/instrumentación , Diferenciación Celular , Medios de Cultivo/química , Medios de Cultivo/farmacología , Dioxoles/farmacología , Ácido Edético/química , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor de Transcripción PAX6/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Reproducibilidad de los Resultados , Suspensiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA