Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell Biochem Funct ; 42(2): e3976, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38489223

RESUMEN

Fluoride (F) has been employed worldwide to control dental caries. More recently, it has been suggested that the consumption of low doses of F in the drinking water may reduce blood glucose levels, introducing a new perspective for the use of F for the management of blood glucose. However, the exact mechanism by which F affects blood glucose levels remains largely unexplored. Given that the small gut plays a pivotal role in glucose homeostasis, the aim of this study was to investigate the proteomic changes induced by low doses of F in the ileum of female nonobese-diabetic (NOD) mice. Forty-two female NOD mice were divided into two groups based on the F concentration in their drinking water for 14 weeks: 0 (control) or 10 mgF/L. At the end of the experimental period, the ileum was collected for proteomic and Western blot analyses. Proteomic analysis indicated an increase in isoforms of actin, gastrotropin, several H2B histones, and enzymes involved in antioxidant processes, as well as a decrease in enzymes essential for energy metabolism. In summary, our data indicates an adaptive response of organism to preserve protein synthesis in the ileum, despite significant alterations in energy metabolism typically induced by F, therefore highlighting the safety of controlled fluoridation in water supplies.


Asunto(s)
Caries Dental , Agua Potable , Ratones , Animales , Femenino , Fluoruros/farmacología , Fluoruros/análisis , Ratones Endogámicos NOD , Glucemia/análisis , Proteómica , Agua Potable/análisis , Íleon/química , Íleon/metabolismo
2.
Caries Res ; 58(3): 162-172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38432208

RESUMEN

INTRODUCTION: The identification of acid-resistant proteins, including hemoglobin (Hb), within the acquired enamel pellicle (AEP) led to the proposition of the "acquired pellicle engineering" concept, which involves the modification of the AEP by incorporating specific proteins, presenting a novel strategy to prevent dental demineralization. OBJECTIVE: Combining in vivo and in vitro proof-of-concept protocols, we sought to reveal the impact of AEP engineering with Hb protein on the biofilm microbiome and enamel demineralization. METHODS: In the in vivo studies, 10 volunteers, in 2 independent experiments, rinsed (10 mL,1 min) with deionized water-negative control or 1.0 mg/mL Hb. The AEP and biofilm formed along 2 or 3 h, respectively, were collected. AEP was analyzed by quantitative shotgun-label-free proteomics and biofilm by 16S-rRNA next-generation sequencing (NGS). In in vitro study, a microcosm biofilm protocol was employed. Seventy-two bovine enamel specimens were treated with (1) phosphate-buffered solution (PBS), (2) 0.12% chlorhexidine, (3) 500 ppm NaF, (4) 1.0 mg/mL Hb, (5) 2.0 mg/mL Hb, and (6) 4.0 mg/mL Hb. The biofilm was cultivated for 5 days. Resazurin, colony forming units (CFU), and transversal microradiography were performed. RESULTS: Proteomics and NGS analysis revealed that Hb increased proteins with antioxidant, antimicrobial, acid-resistance, hydroxyapatite-affinity, calcium-binding properties and showed a reduction in oral pathogenic bacteria. In vitro experiments demonstrated that the lowest Hb concentration was the most effective in reducing bacterial activity, CFU, and enamel demineralization compared to PBS. CONCLUSION: These findings suggest that Hb could be incorporated into anticaries dental products to modify the oral microbiome and control caries, highlighting its potential for AEP and biofilm microbiome engineering.


Asunto(s)
Biopelículas , Película Dental , Hemoglobinas , Antisépticos Bucales , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Hemoglobinas/análisis , Película Dental/microbiología , Humanos , Animales , Bovinos , Antisépticos Bucales/farmacología , Desmineralización Dental/prevención & control , Desmineralización Dental/microbiología , Adulto , Esmalte Dental/microbiología , Esmalte Dental/efectos de los fármacos , Masculino , ARN Ribosómico 16S , Femenino , Adulto Joven , Clorhexidina/farmacología
3.
Caries Res ; 58(2): 86-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38198757

RESUMEN

INTRODUCTION: This study investigated the changes in the acquired enamel pellicle (AEP) proteome when this integument is formed in vivo after treatment with sugarcane-derived cystatin (CaneCPI-5), hemoglobin (HB), and a statherin-derived peptide (StN15), or their combination and then exposed to an intrinsic acid challenge. The effectiveness of these treatments in preventing intrinsic erosion was also evaluated. METHODS: Ten volunteers, after prophylaxis, in 5 crossover phases, rinsed with the following solutions (10 mL, 1 min): control (deionized water-H2O) - group 1, 0.1 mg/mL CaneCPI-5 - group 2, 1.0 mg/mL HB - group 3, 1.88 × 10-5M StN15 - group 4, or a blend of these - group 5. Following this, AEP formation occurred (2 h) and an enamel biopsy (10 µL, 0.01 m HCl, pH 2.0, 10 s) was conducted on one incisor. The biopsy acid was then analyzed for calcium (Arsenazo method). The vestibular surfaces of the other teeth were treated with the same acid. Acid-resistant proteins in the residual AEP were then collected and analyzed quantitatively via proteomics. RESULTS: Compared to control, treatment with the proteins/peptide, mixed or isolated, markedly enhanced acid-resistant proteins in the AEP. Notable increases occurred in pyruvate kinase PKM (11-fold, CaneCPI-5), immunoglobulins and submaxillary gland androgen-regulated protein 3B (4-fold, StN15), Hb, and lysozyme C (2-fold, StN15). Additionally, a range of proteins not commonly identified in the AEP but known to bind calcium or other proteins were identified in groups treated with the tested proteins/peptide either in isolation or as a mixture. The mean (SD, mM) calcium concentrations released from enamel were 3.67 ± 1.48a, 3.11 ± 0.72a, 1.94 ± 0.57b, 2.37 ± 0.90a, and 2.38 ± 0.45a for groups 1-5, respectively (RM-ANOVA/Tukey, p < 0.05). CONCLUSIONS: Our findings demonstrate that all treatments, whether using a combination of proteins/peptides or in isolation, enhanced acid-resistant proteins in the AEP. However, only HB showed effectiveness in protecting against intrinsic erosive demineralization. These results pave the way for innovative preventive methods against intrinsic erosion, using "acquired pellicle engineering" techniques.


Asunto(s)
Calcio , Erosión de los Dientes , Humanos , Calcio/metabolismo , Película Dental , Péptidos , Proteoma , Erosión de los Dientes/prevención & control , Hemoglobinas/metabolismo
4.
Clin Oral Investig ; 28(5): 261, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642171

RESUMEN

OBJECTIVE: This study was designed in two-legs. In the in vivo, we explored the potential of a rinse solution containing a combination (Comb) of 0.1 mg/mL CaneCPI-5 (sugarcane-derive cystatin), 1.88 × 10- 5M StN15 (statherin-derived peptide) and 1.0 mg/mL hemoglobin (Hb) to change the protein profile of the acquired enamel pellicle(AEP) and the microbiome of the enamel biofilm. The in vitro, was designed to reveal the effects of Comb on the viability and bacterial composition of the microcosm biofilm, as well as on enamel demineralization. MATERIALS AND METHODS: In vivo study, 10 participants rinsed (10mL,1 min) with either deionized water (H2O-control) or Comb. AEP and biofilm were collected after 2 and 3 h, respectively, after rinsing. AEP samples underwent proteomics analysis, while biofilm microbiome was assessed via 16 S-rRNA Next Generation Sequencing(NGS). In vitro study, a microcosm biofilm protocol was employed. Ninety-six enamel specimens were treated with: 1)Phosphate-Buffered Solution-PBS(negative-control), 2)0.12%Chlorhexidine, 3)500ppmNaF and 4)Comb. Resazurin, colony-forming-units(CFU) and Transversal Microradiography(TMR) were performed. RESULTS: The proteomic results revealed higher quantity of proteins in the Comb compared to control associated with immune system response and oral microbial adhesion. Microbiome showed a significant increase in bacteria linked to a healthy microbiota, in the Comb group. In the in vitro study, Comb group was only efficient in reducing mineral-loss and lesion-depth compared to the PBS. CONCLUSIONS: The AEP modification altered the subsequent layers, affecting the initial process of bacterial adhesion of pathogenic and commensal bacteria, as well as enamel demineralization. CLINICAL RELEVANCE: Comb group shows promise in shaping oral health by potentially introducing innovative approaches to prevent enamel demineralization and deter tooth decay.


Asunto(s)
Caries Dental , Desmineralización Dental , Humanos , Película Dental/química , Película Dental/microbiología , Caries Dental/prevención & control , Proteómica , Biopelículas , Hemoglobinas/análisis , Desmineralización Dental/prevención & control
5.
Biofouling ; 39(3): 339-348, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37259560

RESUMEN

This study evaluated the antimicrobial and anticaries effects of toothpaste containing hydroxyapatite nanoparticles (nanoHAP - 5 or 10%), xylitol (2 or 3%) and propolis (1 or 2%), associated or not with 1500 ppm fluoride (F). An in vitro model was used with microcosm biofilm produced from a pool of human saliva and McBain saliva (1:50) in the first 8 h of culture on 162 bovine enamel specimens. At the end of the experimental period, analyses of metabolic activity, colony forming units (CFU) and transverse microradiography (TMR) were performed. This study showed a possible decrease in demineralization and increase in remineralization by the commercial toothpaste (1500 ppm F) and for the experimental toothpaste containing the highest concentration of all agents, combined with F. In addition, a reduction in antimicrobial activity possibly caused by propolis and xylitol, mainly in relation to cariogenic bacteria, was observed.


Asunto(s)
Antiinfecciosos , Ascomicetos , Caries Dental , Nanopartículas , Própolis , Desmineralización Dental , Animales , Bovinos , Humanos , Fluoruros/farmacología , Pastas de Dientes/farmacología , Cariostáticos/farmacología , Própolis/farmacología , Xilitol/farmacología , Durapatita/farmacología , Desmineralización Dental/prevención & control , Biopelículas , Antiinfecciosos/farmacología , Caries Dental/prevención & control
6.
Clin Oral Investig ; 26(1): 225-258, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34052889

RESUMEN

OBJECTIVES: Salivary glands are affected during radiotherapy in the head and neck region, leading to a reduction in salivary flow and changes its composition. Besides negatively affecting the oral soft tissues, this can also lead to dental impairment. Thus, we evaluated the effect of radiotherapy in the proteomic profile of the saliva in patients with head and neck cancer (HNC). MATERIALS AND METHODS: HNC patients had their saliva collected before (BRT), during (2-5 weeks; DRT), and after (3-4 months; ART) radiotherapy. Saliva was also collected from healthy volunteers (control; C). Samples were processed for proteomic analysis. RESULTS: In total, 1055 proteins were identified, among which 46 were common to all groups, while 86, 86, 286, and 395 were exclusively found in C, BRT, DRT, and ART, respectively. Remarkably, alpha-enolase was increased 35-fold DRT compared with BRT, while proline-rich proteins were decreased. ART there was a 16-fold increase in scaffold attachment factor-B1 and a 3-fold decrease in alpha-enolase and several cystatins. When compared with C, salivary proteins of BRT patients showed increases cystatin-C, lysozyme C, histatin-1, and proline-rich proteins CONCLUSION/CLINICAL REVELANCE: Both HNC and radiotherapy remarkably change the salivary protein composition. Altogether, our results, for the first time, suggest investigating alpha-enolase levels in saliva DRT in future studies as a possible biomarker and strategy to predict the efficiency of the treatment. Moreover, our data provide important insights for designing dental products that are more effective for these patients and contribute to a better understanding of the progressive changes in salivary proteins induced by radiotherapy. Graphical abstract.


Asunto(s)
Neoplasias de Cabeza y Cuello , Proteoma , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Proteómica , Saliva , Proteínas y Péptidos Salivales
7.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216367

RESUMEN

Aluminum (Al) is one of the most abundant elements on Earth, and its high extraction rate and industrial use make human exposure very common. As Al may be a human toxicant, it is important to investigate the effects of Al exposure, mainly at low doses and for prolonged periods, by simulating human exposure. This work aimed to study the effects of low-dose exposure to chloride aluminum (AlCl3) on the oxidative biochemistry, proteomic profile, and morphology of the major salivary glands. Wistar male rats were exposed to 8.3 mg/kg/day of AlCl3 via intragastric gavage for 60 days. Then, the parotid and submandibular glands were subjected to biochemical assays, proteomic evaluation, and histological analysis. Al caused oxidative imbalance in both salivary glands. Dysregulation of protein expression, mainly of those related to cytoarchitecture, energy metabolism and glandular function, was detected in both salivary glands. Al also promoted histological alterations, such as acinar atrophy and an increase in parenchymal tissue. Prolonged exposure to Al, even at low doses, was able to modulate molecular alterations associated with morphological impairments in the salivary glands of rats. From this perspective, prolonged Al exposure may be a risk to exposed populations and their oral health.


Asunto(s)
Aluminio/efectos adversos , Glándulas Salivales/efectos de los fármacos , Glándulas Salivales/metabolismo , Cloruro de Aluminio/efectos adversos , Animales , Masculino , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteómica/métodos , Ratas , Ratas Wistar
8.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293377

RESUMEN

Hippocampus is the brain area where aluminum (Al) accumulates in abundance and is widely associated with learning and memory. In the present study, we evaluate behavioral, tissue, and proteomic changes in the hippocampus of Wistar rats caused by exposure to doses that mimic human consumption of aluminum chloride (AlCl3) in urban areas. For this, male Wistar rats were divided into two groups: Control (distilled water) and AlCl3 (8.3 mg/kg/day), both groups were exposed orally for 60 days. After the Al exposure protocol, cognitive functions were assessed by the Water maze test, followed by a collection for analysis of the global proteomic profile of the hippocampus by mass spectrometry. Aside from proteomic analysis, we performed a histological analysis of the hippocampus, to the determination of cell body density by cresyl violet staining in Cornu Ammonis fields (CA) 1 and 3, and hilus regions. Our results indicated that exposure to low doses of aluminum chloride triggered a decreased cognitive performance in learning and memory, being associated with the deregulation of proteins expression, mainly those related to the regulation of the cytoskeleton, cellular metabolism, mitochondrial activity, redox regulation, nervous system regulation, and synaptic signaling, reduced cell body density in CA1, CA3, and hilus.


Asunto(s)
Aluminio , Proteómica , Humanos , Ratas , Masculino , Animales , Aluminio/toxicidad , Aluminio/metabolismo , Cloruro de Aluminio/toxicidad , Ratas Wistar , Hipocampo/metabolismo , Compuestos de Aluminio/toxicidad
9.
Caries Res ; 55(4): 333-340, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34344000

RESUMEN

Changes in the proteomic profile of the acquired enamel pellicle (AEP) formed for 3 min or 2 h after rinsing with a peptide containing the 15 N-terminal residues of statherin, with serines 2 and 3 phosphorylated (StatpSpS), were evaluated. Nine volunteers participated in 2 consecutive days. Each day, after professional tooth cleaning, they rinsed for 1 min with 10 mL of phosphate buffer containing 1.88 × 10-5 M StatpSpS or phosphate buffer only (control). The acquired pellicle formed on enamel after 3 min or 2 h was collected with electrode filter papers soaked in 3% citric acid. After protein extraction, samples were analyzed by quantitative shotgun label-free proteomics. In the 3-min AEP, 19 and 131 proteins were uniquely identified in the StatpSpS and control groups, respectively. Proteins typically found in the AEP were only found in the latter. Only 2 proteins (neutrophil defensins) were increased upon treatment with StatpSpS, while 65 proteins (among which are several typical AEP proteins) were decreased. In the 2-h AEP, 50 and 108 proteins were uniquely found in StatpSpS and control groups, respectively. Hemoglobin subunits and isoforms of keratin were only found in the StatpSpS group, while cystatin-C, cathepsin D, and cathepsin G, isoforms of heat shock 70 and protocadherin were exclusively found in the control group. In addition, 23 proteins were increased upon treatment with StatpSpS, among which are histatin-1, serum albumin, and isoforms of neutrophil defensin and keratin, while 77 were decreased, most of them were typical AEP proteins. In both evaluated periods, rinsing with StatpSpS profoundly changed the proteomic profile of the AEP, which might impact the protective role of this integument against carious or erosive demineralization. This study provides important insights on the dynamics of the protein composition of the AEP along time, after rinsing with a solution containing StatpSpS.


Asunto(s)
Proteoma , Proteómica , Esmalte Dental , Película Dental , Humanos , Péptidos
10.
Ecotoxicol Environ Saf ; 208: 111437, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33096359

RESUMEN

Long-term exposure to high concentrations of fluoride (F) can damage mineralized and soft tissues such as bones, liver, kidney, intestine, and nervous system of adult rats. The high permeability of the blood-brain barrier and placenta to F during pregnancy and lactation may be critical to neurological development. Therefore, this study aimed to investigate the effects of F exposure during pregnancy and lactation on molecular processes and oxidative biochemistry of offspring rats' hippocampus. Pregnant Wistar rats were randomly assigned into 3 groups in accordance with the drinking water received: G1 - deionized water (control); G2 - 10 mg/L of F and G3 - 50 mg/L of F. The exposure to fluoridated water began on the first day of pregnancy and lasted until the 21st day of breastfeeding (when the offspring rats were weaned). Blood plasma samples of the offspring rats were collected to determine F levels. Hippocampi samples were collected for oxidative biochemistry analyses through antioxidant capacity against peroxyl (ACAP), lipid peroxidation (LPO), and nitrite (NO2-) levels. Also, brain-derived neurotrophic factor (BDNF) gene expression (RT-qPCR) and proteomic profile analyses were performed. The results showed that exposure to both F concentrations during pregnancy and lactation increased the F bioavailability, triggered redox imbalance featured by a decrease of ACAP, increase of LPO and NO2- levels, BDNF overexpression and changes in the hippocampus proteome. These findings raise novel questions regarding potential repercussions on the hippocampus structure and functioning in the different cognitive domains.


Asunto(s)
Contaminantes Ambientales/toxicidad , Fluoruros/toxicidad , Hipocampo/efectos de los fármacos , Estrés Oxidativo/fisiología , Animales , Antioxidantes/metabolismo , Factor Neurotrófico Derivado del Encéfalo , Femenino , Fluoruros/metabolismo , Hipocampo/crecimiento & desarrollo , Lactancia , Peroxidación de Lípido/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Proteoma/metabolismo , Proteómica , Ratas , Ratas Wistar
11.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35008538

RESUMEN

Mercury is a severe environmental pollutant with neurotoxic effects, especially when exposed for long periods. Although there are several evidences regarding mercury toxicity, little is known about inorganic mercury (IHg) species and cerebellum, one of the main targets of mercury associated with the neurological symptomatology of mercurial poisoning. Besides that, the global proteomic profile assessment is a valuable tool to screen possible biomarkers and elucidate molecular targets of mercury neurotoxicity; however, the literature is still scarce. Thus, this study aimed to investigate the effects of long-term exposure to IHg in adult rats' cerebellum and explore the modulation of the cerebellar proteome associated with biochemical and functional outcomes, providing evidence, in a translational perspective, of new mercury toxicity targets and possible biomarkers. Fifty-four adult rats were exposed to 0.375 mg/kg of HgCl2 or distilled water for 45 days using intragastric gavage. Then, the motor functions were evaluated by rotarod and inclined plane. The cerebellum was collected to quantify mercury levels, to assess the antioxidant activity against peroxyl radicals (ACAPs), the lipid peroxidation (LPO), the proteomic profile, the cell death nature by cytotoxicity and apoptosis, and the Purkinje cells density. The IHg exposure increased mercury levels in the cerebellum, reducing ACAP and increasing LPO. The proteomic approach revealed a total 419 proteins with different statuses of regulation, associated with different biological processes, such as synaptic signaling, energy metabolism and nervous system development, e.g., all these molecular changes are associated with increased cytotoxicity and apoptosis, with a neurodegenerative pattern on Purkinje cells layer and poor motor coordination and balance. In conclusion, all these findings feature a neurodegenerative process triggered by IHg in the cerebellum that culminated into motor functions deficits, which are associated with several molecular features and may be related to the clinical outcomes of people exposed to the toxicant.


Asunto(s)
Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Intoxicación del Sistema Nervioso por Mercurio/metabolismo , Mercurio/toxicidad , Enfermedades Neurodegenerativas/metabolismo , Proteoma/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Metabolismo Energético/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Compuestos de Metilmercurio/toxicidad , Corteza Motora/efectos de los fármacos , Corteza Motora/metabolismo , Peróxidos/metabolismo , Proteómica/métodos , Células de Purkinje/efectos de los fármacos , Células de Purkinje/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
12.
Oral Dis ; 26(6): 1200-1208, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32237000

RESUMEN

OBJECTIVES: To evaluate the oral condition of alcohol and tobacco dependents and identify salivary protein candidates for biomarkers of oral disorders. SUBJECTS AND METHODS: Thirty-three male volunteers were evaluated for alcohol abuse rehabilitation; nine were selected for proteomic analysis. Intraoral examination was performed, and non-stimulated saliva was collected. Salivary proteins were extracted and processed for analysis. A list of proteins identified in saliva was generated from the database and manually revised, obtaining the total number of candidate biomarkers for oral disorders. RESULTS: The mean age (n = 33) was 42.94 ± 8.61 years. Fourteen (42.4%) subjects presented with 23 oral mucosa changes, and 31 (94%) had dental plaque. A total of 282 proteins were found in saliva (n = 9), of which 26 were identified as candidates for biomarkers of oral disorders. After manual review, 21 proteins were selected. The highest number of candidates for biomarkers was associated with carcinoma of head and neck (n = 10), nasopharyngeal carcinoma (n = 6), and periodontal disease (n = 6). CONCLUSION: Alcohol and tobacco dependents showed gingival inflammation, and less than half of them showed oral mucosa changes. Twenty-one protein candidates for biomarkers of oral disorders were identified in saliva. The two major oral disorders in number of candidates for biomarkers were head and neck cancer and periodontal disease.

13.
Caries Res ; 54(5-6): 466-474, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33171464

RESUMEN

OBJECTIVE: Saliva is the most important biological factor to protect against erosive tooth wear (ETW). Gastroesophageal reflux disease (GERD) patients have an increased risk of ETW due to the frequent presence of intrinsic acids in the oral cavity. Remarkably, not all GERD patients suffer from ETW, which might be due to differences in the composition of the saliva. METHODS: This study compared the proteomic profile of saliva in patients (1) with GERD and ETW (basic erosive wear examination, BEWE, score ≥9; GE group) and (2) with GERD without ETW (BEWE = 0; GNE group) using shotgun label-free quantitative proteomic analysis nLC-ESI-MS/MS. The ability of hemoglobin (Hb) to protect against initial enamel erosion caused by a daily 10-s immersion of enamel specimens in 0.01 M HCl (pH 2.3) for 3 days was evaluated in vitro for proof of concept. Surface hardness change was used as response variable. RESULTS: The differential expression of Hb subunits was significantly increased in the GNE group versus the GE group, in particular the Hb α-subunit that showed a >22-fold increase. Expressions of serum albumin (4.5-fold) and isoforms of cytoskeletal keratin type II (>3-fold) were also increased in the GNE group. Proteinase inhibitors, such as α1-antitrypsin and α2-macroglobulin, were only identified in the GNE group. In vitro, Hb (1.0 and 4.0 mg/mL) significantly reduced initial enamel erosion compared to a negative control after 3 days. CONCLUSIONS: Our results indicate that many proteins, with special emphasis on Hb, may be involved in the resistance of GERD patients to the occurrence of ETW. These proteins may be candidates for inclusion in dental products to protect against ETW.


Asunto(s)
Reflujo Gastroesofágico , Erosión de los Dientes , Desgaste de los Dientes , Reflujo Gastroesofágico/complicaciones , Reflujo Gastroesofágico/prevención & control , Hemoglobinas , Humanos , Prevalencia , Proteómica , Espectrometría de Masas en Tándem , Erosión de los Dientes/etiología , Erosión de los Dientes/prevención & control
14.
Ecotoxicol Environ Saf ; 191: 110159, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31962214

RESUMEN

Mercury chloride (HgCl2) is a chemical pollutant widely found in the environment. This form of mercury is able to promote several damages to the Central Nervous System (CNS), however the effects of HgCl2 on the spinal cord, an important pathway for the communication between the CNS and the periphery, are still poorly understood. The aim of this work was to investigate the effects of HgCl2 exposure on spinal cord of adult rats. For this, animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. Then, they were euthanized, the spinal cord collected and we investigated the mercury concentrations in medullary parenchyma and the effects on oxidative biochemistry, proteomic profile and tissue structures. Our results showed that exposure to this metal promoted increased levels of Hg in the spinal cord, impaired oxidative biochemistry by triggering oxidative stress, mudulated antioxidant system proteins, energy metabolism and myelin structure; as well as caused disruption in the myelin sheath and reduction in neuronal density. Despite the low dose, we conclude that prolonged exposure to HgCl2 triggers biochemical changes and modulates the expression of several proteins, resulting in damage to the myelin sheath and reduced neuronal density in the spinal cord.


Asunto(s)
Contaminantes Ambientales/toxicidad , Cloruro de Mercurio/toxicidad , Neuronas Motoras/efectos de los fármacos , Enfermedades Neurodegenerativas/inducido químicamente , Proteoma/metabolismo , Médula Espinal/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Axones/efectos de los fármacos , Axones/ultraestructura , Masculino , Neuronas Motoras/metabolismo , Neuronas Motoras/ultraestructura , Vaina de Mielina/ultraestructura , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Proteómica , Ratas , Ratas Wistar , Médula Espinal/metabolismo , Médula Espinal/ultraestructura
15.
Int J Mol Sci ; 21(10)2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443589

RESUMEN

Lead (Pb) is an environmental contaminant that presents a high risk for human health. We aimed to investigate the possible alterations triggered by the exposure to Pb acetate for a long period in motor performance and the possible relationship with biochemical, proteomic and morphological alterations in the cerebellum of rats. Male Wistar rats were exposed for 55 days, at 50 mg/Kg of Pb acetate, and the control animals received distilled water. Open field (OF) and rotarod tests; biochemistry parameters (MDA and nitrite); staining/immunostaining of Purkinje cells (PC), mature neurons (MN), myelin sheath (MS) and synaptic vesicles (SYN) and proteomic profile were analyzed. Pb deposition on the cerebellum area and this study drove to exploratory and locomotion deficits and a decrease in the number of PC, MN, SYN and MS staining/immunostaining. The levels of MDA and nitrite remained unchanged. The proteomic profile showed alterations in proteins responsible for neurotransmitters release, as well as receptor function and second messengers signaling, and also proteins involved in the process of apoptosis. Thus, we conclude that the long-term exposure to low Pb dose promoted locomotion and histological tracings, associated with alterations in the process of cell signaling, as well as death by apoptosis.


Asunto(s)
Cerebelo/metabolismo , Plomo/toxicidad , Locomoción , Proteoma , Células de Purkinje/patología , Animales , Apoptosis , Cerebelo/patología , Cerebelo/fisiopatología , Masculino , Neurotransmisores/metabolismo , Ratas , Ratas Wistar , Vesículas Sinápticas
16.
Int J Mol Sci ; 21(19)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023249

RESUMEN

Although the literature does not provide evidence of health risks from exposure to fluoride (F) in therapeutic doses, questions remain about the effects of long-term and high-dose use on the function of the central nervous system. The objective of this study was to investigate the effect of long-term exposure to F at levels similar to those found in areas of artificial water fluoridation and in areas of endemic fluorosis on biochemical, proteomic, cell density, and functional parameters associated with the cerebellum. For this, mice were exposed to water containing 10 mg F/L or 50 mg F/L (as sodium fluoride) for 60 days. After the exposure period, the animals were submitted to motor tests and the cerebellum was evaluated for fluoride levels, antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (MDA), and nitrite levels (NO). The proteomic profile and morphological integrity were also evaluated. The results showed that the 10 mg F/L dose was able to decrease the ACAP levels, and the animals exposed to 50 mg F/L presented lower levels of ACAP and higher levels of MDA and NO. The cerebellar proteomic profile in both groups was modulated, highlighting proteins related to the antioxidant system, energy production, and cell death, however no neuronal density change in cerebellum was observed. Functionally, the horizontal exploratory activity of both exposed groups was impaired, while only the 50 mg F/L group showed significant changes in postural stability. No motor coordination and balance impairments were observed in both groups. Our results suggest that fluoride may impair the cerebellar oxidative biochemistry, which is associated with the proteomic modulation and, although no morphological impairment was observed, only the highest concentration of fluoride was able to impair some cerebellar motor functions.


Asunto(s)
Sistema Nervioso Central/metabolismo , Cerebelo/efectos de los fármacos , Fluoruros/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Cerebelo/metabolismo , Fluoruros/farmacología , Humanos , Peroxidación de Lípido/efectos de los fármacos , Ratones , Oxidación-Reducción/efectos de los fármacos , Peróxidos/antagonistas & inhibidores , Proteómica/métodos , Fluoruro de Sodio/farmacología
17.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967364

RESUMEN

Lead (Pb) is an environmental and occupational neurotoxicant after long-term exposure. This study aimed to investigate the effects of systemic Pb exposure in rats from adolescence to adulthood, evaluating molecular, morphologic and functional aspects of hippocampus. For this, male Wistar rats were exposed to 50 mg/kg of Pb acetate or distilled water for 55 days by intragastric gavage. For the evaluation of short-term and long-term memories, object recognition and step-down inhibitory avoidance tests were performed. At the end of the behavioral tests, the animals were euthanized and the hippocampus dissected and processed to the evaluation of: Pb content levels in hippocampal parenchyma; Trolox equivalent antioxidant capacity (TEAC), glutathione (GSH) and malondialdehyde (MDA) levels as parameters of oxidative stress and antioxidant status; global proteomic profile and neuronal degeneration by anti-NeuN immunohistochemistry analysis. Our results show the increase of Pb levels in the hippocampus of adult rats exposed from adolescence, increased MDA and GSH levels, modulation of proteins related to neural structure and physiology and reduced density of neurons, hence a poor cognitive performance on short and long-term memories. Then, the long-term exposure to Pb in this period of life may impair several biologic organizational levels of the hippocampal structure associated with functional damages.


Asunto(s)
Envejecimiento , Contaminantes Ambientales/toxicidad , Plomo/toxicidad , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Antioxidantes/metabolismo , Glutatión/metabolismo , Hipocampo , Masculino , Malondialdehído/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo
18.
Ecotoxicol Environ Saf ; 168: 198-204, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30388537

RESUMEN

Water fluoridation is the most widespread measure to prevent dental caries but its relationship with the development of type-1 diabetes (T1D), which has been increasing by 2-5% worldwide, is not quite well understood. AIM: This study evaluated if fluoride (F) administered in the drinking water can prevent or reduce the development of T1D in non-obese diabetic (NOD) mice, as well as to explore the underlying mechanisms. MATERIALS AND METHODS: Twenty-four weaning NOD mice received water containing 0, 10 or 50 ppm F for 21 days. Plasma glucose and insulin were analyzed. Quantitative proteomic analysis was conducted in the liver and gastrocnemius muscle. RESULTS: Animals treated with 10 ppm F had significantly lower glucose levels than the control group, but there was no significant difference among the groups in relation to insulin. The % of ß-cell function was significantly higher in the 10 ppm F group. Changes in the proteomic profile of muscle and liver were seen among the groups. In the muscle, the 10 ppm F group presented, when compared with control, increased expression of proteins involved in energy metabolism. The 50 ppm F group, compared with control, presented increased expression of proteins related to muscle contraction, differentiation of brown adipose tissue and apoptosis. For the liver, the 10 ppm F group had increase in proteins involved in energy metabolism and protein synthesis, in respect to control. There was also an increase in isoforms of Glutathione S transferase, which was confirmed by Western blotting. In the group treated with 50 ppm F, proteins related to ROS metabolism and energetic metabolism were altered. CONCLUSION: Increased expression of antioxidant proteins by treatment with low F concentration may possibly help to explain protection against the development of T1D, which should be better explored in future mechanistic studies.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 1/prevención & control , Fluoruros/farmacología , Animales , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/prevención & control , Diabetes Mellitus Tipo 1/sangre , Relación Dosis-Respuesta a Droga , Agua Potable , Metabolismo Energético , Estudios de Evaluación como Asunto , Fluoruros/sangre , Regulación de la Expresión Génica , Glutatión Transferasa/metabolismo , Insulina/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos NOD , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteómica , Especies Reactivas de Oxígeno/metabolismo
19.
Toxicol Appl Pharmacol ; 358: 68-75, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30217653

RESUMEN

Fluoride (F) can induce changes in the expression of several liver proteins. It is suggested that these changes are dose- and time-dependent. The objective of this study was to analyze the effect of different F concentrations and exposure times to this ion on the pattern of protein expression in the liver of rats. Thirt-six 21-day-old male Wistar rats were divided into 2 groups (n = 18) according to the treatment duration (20 or 60 days). Each of these groups was then divided into 3 subgroups (n = 6) according to the concentration of F administered in drinking water, as follows: 0 mg/L (control), 15 mg/L or 50 mg/L. After the experiment periods, the animals were anesthetized and the liver and blood were collected. F was analyzed in plasma and liver. Part of the liver was fixed for histological analysis. Liver proteins were extracted and prepared for quantitative label-free mass spectrometry analysis. F concentrations in plasma and liver were significantly higher in the group treated with 50 mg /L in comparison with control, regardless the time of exposure. Histological alterations in the liver were more evident in the subgroups treated for 20 days. The proteomic analysis revealed changes in proteins related to endoplasmic reticulum and mitochondrial oxidative stress, mitochondrial alteration, apoptosis and cellular respiration upon exposure to F. The results reinforce previous findings showing that the effects of F in the liver are dose- and time-dependent and provide the molecular basis for understanding the evolution of these effects.


Asunto(s)
Agua Potable/efectos adversos , Fluoruros/sangre , Fluoruros/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Agua Potable/administración & dosificación , Fluoruros/administración & dosificación , Masculino , Ratas , Ratas Wistar , Factores de Tiempo
20.
J Dent ; 143: 104876, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38367826

RESUMEN

OBJECTIVE: This study evaluated the effect of administration of trans-resveratrol-containing orodispersible tablets on the protein composition of the AEP and on blood plasma trans-resveratrol concentrations. METHODS: Ten volunteers participated in two crossover double-blind phases. In each phase, after dental prophylaxis, they received a trans-resveratrol (15 mg) orodispersible tablet, or a placebo tablet (without actives). The AEP formed after 120 min was collected with electrode filter papers soaked in 3 % citric acid. Blood samples were collected 30, 45, 60 and 120 min after the use of the tablet. After protein extraction, AEP samples were analyzed by shotgun labelfree quantitative proteomics and plasma samples were analyzed by high-performance liquid chromatography (HPLC). RESULTS: Eight hundred and two proteins were identified in the AEP. Among them, 336 and 213 were unique to the trans-resveratrol and control groups, respectively, while 253 were common to both groups. Proteins with important functions in the AEP had increased expression in the trans-resveratroltreated group, such as neutrophil defensins, S100 protein isoforms, lysozyme C, cystatin-D, mucin-7, alphaamylase, albumin, haptoglobin and statherin. Trans-resveratrol was detected in the plasma at all the times evaluated, with the peak at 30 min. CONCLUSIONS: The administration of trans-resveratrol in sublingual orodispersible tablets was effective both to increase the bioavailability of the polyphenol and the expression of antibacterial and acid-resistant proteins in the AEP, which might benefit oral and general health.


Asunto(s)
Proteínas , Humanos , Película Dental , Proteínas/análisis , Proteínas/metabolismo , Proteínas/farmacología , Resveratrol/farmacología , Resveratrol/análisis , Resveratrol/metabolismo , Estudios Cruzados , Método Doble Ciego
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA