Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Cell Sci ; 134(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34347092

RESUMEN

Mitogen-activated protein kinase (MAPK) pathways control cell differentiation and the response to stress. In Saccharomyces cerevisiae, the MAPK pathway that controls filamentous growth (fMAPK) shares components with the pathway that regulates the response to osmotic stress (HOG). Here, we show that the two pathways exhibit different patterns of activity throughout the cell cycle. The different patterns resulted from different expression profiles of genes encoding mucin sensors that regulate the pathways. Cross-pathway regulation from the fMAPK pathway stimulated the HOG pathway, presumably to modulate fMAPK pathway activity. We also show that the shared tetraspan protein Sho1p, which has a dynamic localization pattern throughout the cell cycle, induced the fMAPK pathway at the mother-bud neck. A Sho1p-interacting protein, Hof1p, which also localizes to the mother-bud neck and regulates cytokinesis, also regulated the fMAPK pathway. Therefore, spatial and temporal regulation of pathway sensors, and cross-pathway regulation, control a MAPK pathway that regulates cell differentiation in yeast.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Diferenciación Celular , Retroalimentación , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Presión Osmótica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
PLoS Genet ; 6(3): e1000883, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20333241

RESUMEN

An important emerging question in the area of signal transduction is how information from different pathways becomes integrated into a highly coordinated response. In budding yeast, multiple pathways regulate filamentous growth, a complex differentiation response that occurs under specific environmental conditions. To identify new aspects of filamentous growth regulation, we used a novel screening approach (called secretion profiling) that measures release of the extracellular domain of Msb2p, the signaling mucin which functions at the head of the filamentous growth (FG) MAPK pathway. Secretion profiling of complementary genomic collections showed that many of the pathways that regulate filamentous growth (RAS, RIM101, OPI1, and RTG) were also required for FG pathway activation. This regulation sensitized the FG pathway to multiple stimuli and synchronized it to the global signaling network. Several of the regulators were required for MSB2 expression, which identifies the MSB2 promoter as a target "hub" where multiple signals converge. Accessibility to the MSB2 promoter was further regulated by the histone deacetylase (HDAC) Rpd3p(L), which positively regulated FG pathway activity and filamentous growth. Our findings provide the first glimpse of a global regulatory hierarchy among the pathways that control filamentous growth. Systems-level integration of signaling circuitry is likely to coordinate other regulatory networks that control complex behaviors.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , AMP Cíclico/metabolismo , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nat Commun ; 14(1): 7693, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001097

RESUMEN

Color and motion are used by many species to identify salient objects. They are processed largely independently, but color contributes to motion processing in humans, for example, enabling moving colored objects to be detected when their luminance matches the background. Here, we demonstrate an unexpected, additional contribution of color to motion vision in Drosophila. We show that behavioral ON-motion responses are more sensitive to UV than for OFF-motion, and we identify cellular pathways connecting UV-sensitive R7 photoreceptors to ON and OFF-motion-sensitive T4 and T5 cells, using neurogenetics and calcium imaging. Remarkably, this contribution of color circuitry to motion vision enhances the detection of approaching UV discs, but not green discs with the same chromatic contrast, and we show how this could generalize for systems with ON- and OFF-motion pathways. Our results provide a computational and circuit basis for how color enhances motion vision to favor the detection of saliently colored objects.


Asunto(s)
Drosophila , Percepción de Movimiento , Animales , Humanos , Drosophila/fisiología , Percepción de Movimiento/fisiología , Células Fotorreceptoras , Visión Ocular
4.
Neuron ; 53(1): 39-52, 2007 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-17196529

RESUMEN

Signal transduction through heterotrimeric G proteins is critical for sensory response across species. Regulator of G protein signaling (RGS) proteins are negative regulators of signal transduction. Herein we describe a role for C. elegans RGS-3 in the regulation of sensory behaviors. rgs-3 mutant animals fail to respond to intense sensory stimuli but respond normally to low concentrations of specific odorants. We find that loss of RGS-3 leads to aberrantly increased G protein-coupled calcium signaling but decreased synaptic output, ultimately leading to behavioral defects. Thus, rgs-3 responses are restored by decreasing G protein-coupled signal transduction, either genetically or by exogenous dopamine, by expressing a calcium-binding protein to buffer calcium levels in sensory neurons or by enhancing glutamatergic synaptic transmission from sensory neurons. Therefore, while RGS proteins generally act to downregulate signaling, loss of a specific RGS protein in sensory neurons can lead to defective responses to external stimuli.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sensación/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/genética , Calcio/metabolismo , Señalización del Calcio/fisiología , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Ácido Glutámico/metabolismo , Mutación/genética , Sistema Nervioso/ultraestructura , Proteínas RGS/genética , Transducción de Señal/fisiología , Olfato/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
5.
PLoS Biol ; 6(8): e196, 2008 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-18700817

RESUMEN

Notch signaling is critical for cell fate decisions during development. Caenorhabditis elegans and vertebrate Notch ligands are more diverse than classical Drosophila Notch ligands, suggesting possible functional complexities. Here, we describe a developmental role in Notch signaling for OSM-11, which has been previously implicated in defecation and osmotic resistance in C. elegans. We find that complete loss of OSM-11 causes defects in vulval precursor cell (VPC) fate specification during vulval development consistent with decreased Notch signaling. OSM-11 is a secreted, diffusible protein that, like previously described C. elegans Delta, Serrate, and LAG-2 (DSL) ligands, can interact with the lineage defective-12 (LIN-12) Notch receptor extracellular domain. Additionally, OSM-11 and similar C. elegans proteins share a common motif with Notch ligands from other species in a sequence defined here as the Delta and OSM-11 (DOS) motif. osm-11 loss-of-function defects in vulval development are exacerbated by loss of other DOS-motif genes or by loss of the Notch ligand DSL-1, suggesting that DOS-motif and DSL proteins act together to activate Notch signaling in vivo. The mammalian DOS-motif protein Deltalike1 (DLK1) can substitute for OSM-11 in C. elegans development, suggesting that DOS-motif function is conserved across species. We hypothesize that C. elegans OSM-11 and homologous proteins act as coactivators for Notch receptors, allowing precise regulation of Notch receptor signaling in developmental programs in both vertebrates and invertebrates.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de la Membrana/fisiología , Receptores Notch/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Drosophila , Femenino , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Jagged-1 , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas de la Membrana/genética , Proteínas Serrate-Jagged , Transducción de Señal , Vulva/fisiología
6.
Elife ; 102021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34913436

RESUMEN

Color and polarization provide complementary information about the world and are detected by specialized photoreceptors. However, the downstream neural circuits that process these distinct modalities are incompletely understood in any animal. Using electron microscopy, we have systematically reconstructed the synaptic targets of the photoreceptors specialized to detect color and skylight polarization in Drosophila, and we have used light microscopy to confirm many of our findings. We identified known and novel downstream targets that are selective for different wavelengths or polarized light, and followed their projections to other areas in the optic lobes and the central brain. Our results revealed many synapses along the photoreceptor axons between brain regions, new pathways in the optic lobes, and spatially segregated projections to central brain regions. Strikingly, photoreceptors in the polarization-sensitive dorsal rim area target fewer cell types, and lack strong connections to the lobula, a neuropil involved in color processing. Our reconstruction identifies shared wiring and modality-specific specializations for color and polarization vision, and provides a comprehensive view of the first steps of the pathways processing color and polarized light inputs.


Asunto(s)
Color , Drosophila melanogaster/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Sinapsis/fisiología , Vías Visuales , Animales , Encéfalo/fisiología , Femenino , Microscopía Electrónica , Neuronas/fisiología , Células Fotorreceptoras de Invertebrados/ultraestructura
7.
J Cell Biol ; 167(6): 1137-46, 2004 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-15611336

RESUMEN

Cell polarity and cell proliferation can be coupled in animal tissues, but how they are coupled is not understood. In Drosophila imaginal discs, loss of the neoplastic tumor suppressor gene scribble (scrib), which encodes a multidomain scaffolding protein, disrupts epithelial organization and also causes unchecked proliferation. Using an allelic series of mutations along with rescuing transgenes, we have identified domain requirements for polarity, proliferation control, and other Scrib functions. The leucine-rich repeats (LRR) tether Scrib to the plasma membrane, are both necessary and sufficient to organize a polarized epithelial monolayer, and are required for all proliferation control. The PDZ domains, which recruit the LRR to the junctional complex, are dispensable for overall epithelial organization. PDZ domain absence leads to mild polarity defects accompanied by moderate overproliferation, but the PDZ domains alone are insufficient to provide any Scrib function in mutant discs. We suggest a model in which Scrib, via the activity of the LRR, governs proliferation primarily by regulating apicobasal polarity.


Asunto(s)
Proteínas Portadoras/fisiología , Polaridad Celular/fisiología , Proliferación Celular , Proteínas de Drosophila/fisiología , Drosophila/genética , Genes Supresores de Tumor/fisiología , Proteínas de la Membrana/fisiología , Alelos , Animales , Proteínas Portadoras/clasificación , Drosophila/citología , Proteínas de Drosophila/genética , Epitelio/metabolismo , Proteínas de la Membrana/genética , Mutación
8.
mSphere ; 4(2)2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842272

RESUMEN

Many fungal species, including pathogens, undergo a morphogenetic response called filamentous growth, where cells differentiate into a specialized cell type to promote nutrient foraging and surface colonization. Despite the fact that filamentous growth is required for virulence in some plant and animal pathogens, certain aspects of this behavior remain poorly understood. By examining filamentous growth in the budding yeast Saccharomyces cerevisiae and the opportunistic pathogen Candida albicans, we identify responses where cells undergo filamentous growth in groups of cells or aggregates. In S. cerevisiae, aggregate invasive growth was regulated by signaling pathways that control normal filamentous growth. These pathways promoted aggregation in part by fostering aspects of microbial cooperation. For example, aggregate invasive growth required cellular contacts mediated by the flocculin Flo11p, which was produced at higher levels in aggregates than cells undergoing regular invasive growth. Aggregate invasive growth was also stimulated by secreted enzymes, like invertase, which produce metabolites that are shared among cells. Aggregate invasive growth was also induced by alcohols that promote density-dependent filamentous growth in yeast. Aggregate invasive growth also required highly polarized cell morphologies, which may affect the packing or organization of cells. A directed selection experiment for aggregating phenotypes uncovered roles for the fMAPK and RAS pathways, which indicates that these pathways play a general role in regulating aggregate-based responses in yeast. Our study extends the range of responses controlled by filamentation regulatory pathways and has implications in understanding aspects of fungal biology that may be relevant to fungal pathogenesis.IMPORTANCE Filamentous growth is a fungal morphogenetic response that is critical for virulence in some fungal species. Many aspects of filamentous growth remain poorly understood. We have identified an aspect of filamentous growth in the budding yeast Saccharomyces cerevisiae and the human pathogen Candida albicans where cells behave collectively to invade surfaces in aggregates. These responses may reflect an extension of normal filamentous growth, as they share the same signaling pathways and effector processes. Aggregate responses may involve cooperation among individual cells, because aggregation was stimulated by cell adhesion molecules, secreted enzymes, and diffusible molecules that promote quorum sensing. Our study may provide insights into the genetic basis of collective cellular responses in fungi. The study may have ramifications in fungal pathogenesis, in situations where collective responses occur to promote virulence.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Saccharomyces cerevisiae/crecimiento & desarrollo , Alcoholes/metabolismo , Candida albicans/genética , Polaridad Celular , Regulación Fúngica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Saccharomyces cerevisiae/genética , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo
9.
Elife ; 82019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31112130

RESUMEN

Animals exhibit innate behaviours to a variety of sensory stimuli including olfactory cues. In Drosophila, one higher olfactory centre, the lateral horn (LH), is implicated in innate behaviour. However, our structural and functional understanding of the LH is scant, in large part due to a lack of sparse neurogenetic tools for this region. We generate a collection of split-GAL4 driver lines providing genetic access to 82 LH cell types. We use these to create an anatomical and neurotransmitter map of the LH and link this to EM connectomics data. We find ~30% of LH projections converge with outputs from the mushroom body, site of olfactory learning and memory. Using optogenetic activation, we identify LH cell types that drive changes in valence behavior or specific locomotor programs. In summary, we have generated a resource for manipulating and mapping LH neurons, providing new insights into the circuit basis of innate and learned olfactory behavior.


Asunto(s)
Conducta Animal , Drosophila/anatomía & histología , Drosophila/fisiología , Cuerpos Pedunculados/anatomía & histología , Cuerpos Pedunculados/fisiología , Corteza Olfatoria/anatomía & histología , Corteza Olfatoria/fisiología , Animales , Conectoma , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Optogenética
10.
Genetics ; 177(3): 1667-77, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17947427

RESUMEN

The Drosophila neoplastic tumor suppressor genes (TSGs) coordinately control cell polarity and proliferation in epithelial and neuronal tissues. While a small group of neoplastic TSG mutations have been isolated and their corresponding genes cloned, the regulatory pathways that normally prevent inappropriate growth remain unclear. Identification of additional neoplastic TSGs may provide insight into this question. We report here the design of an efficient screen for isolating neoplastic TSG mutations utilizing genetically mosaic larvae. This screen is based on a defective pupation phenotype seen when a single pair of imaginal discs is homozygous for a neoplastic TSG mutation, which suggests that continuously proliferating cells can interfere with metamorphosis. Execution of this screen on two chromosome arms led to the identification of mutations in at least seven new neoplastic TSGs. The isolation of additional loci that affect hyperplastic as well as neoplastic growth indicates the utility of this screening strategy for studying epithelial growth control.


Asunto(s)
Drosophila/genética , Genes de Insecto , Genes Supresores de Tumor , Animales , Drosophila/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Femenino , Genes Letales , Prueba de Complementación Genética , Masculino , Metamorfosis Biológica , Mosaicismo , Mutación , Fenotipo , Pupa/crecimiento & desarrollo
11.
Genetics ; 209(1): 31-35, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29535151

RESUMEN

The ability to reproducibly target expression of transgenes to small, defined subsets of cells is a key experimental tool for understanding many biological processes. The Drosophila nervous system contains thousands of distinct cell types and it has generally not been possible to limit expression to one or a few cell types when using a single segment of genomic DNA as an enhancer to drive expression. Intersectional methods, in which expression of the transgene only occurs where two different enhancers overlap in their expression patterns, can be used to achieve the desired specificity. This report describes a set of over 2800 transgenic lines for use with the split-GAL4 intersectional method.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Factores de Transcripción/genética , Animales , Línea Celular , Cruzamientos Genéticos , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Elementos de Facilitación Genéticos , Expresión Génica , Vectores Genéticos/genética , Genotipo , Regiones Promotoras Genéticas , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transgenes
12.
Elife ; 3: e04577, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25535793

RESUMEN

We identified the neurons comprising the Drosophila mushroom body (MB), an associative center in invertebrate brains, and provide a comprehensive map describing their potential connections. Each of the 21 MB output neuron (MBON) types elaborates segregated dendritic arbors along the parallel axons of ∼2000 Kenyon cells, forming 15 compartments that collectively tile the MB lobes. MBON axons project to five discrete neuropils outside of the MB and three MBON types form a feedforward network in the lobes. Each of the 20 dopaminergic neuron (DAN) types projects axons to one, or at most two, of the MBON compartments. Convergence of DAN axons on compartmentalized Kenyon cell-MBON synapses creates a highly ordered unit that can support learning to impose valence on sensory representations. The elucidation of the complement of neurons of the MB provides a comprehensive anatomical substrate from which one can infer a functional logic of associative olfactory learning and memory.


Asunto(s)
Aprendizaje por Asociación , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Lógica , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/inervación , Células Receptoras Sensoriales/fisiología , Animales , Encéfalo/anatomía & histología , Encéfalo/fisiología , Compartimento Celular , Forma de la Célula , Dendritas/metabolismo , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Modelos Neurológicos , Neurotransmisores/metabolismo , Vías Olfatorias/anatomía & histología , Vías Olfatorias/fisiología , Olfato/fisiología
13.
Cell Rep ; 2(4): 991-1001, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23063364

RESUMEN

We established a collection of 7,000 transgenic lines of Drosophila melanogaster. Expression of GAL4 in each line is controlled by a different, defined fragment of genomic DNA that serves as a transcriptional enhancer. We used confocal microscopy of dissected nervous systems to determine the expression patterns driven by each fragment in the adult brain and ventral nerve cord. We present image data on 6,650 lines. Using both manual and machine-assisted annotation, we describe the expression patterns in the most useful lines. We illustrate the utility of these data for identifying novel neuronal cell types, revealing brain asymmetry, and describing the nature and extent of neuronal shape stereotypy. The GAL4 lines allow expression of exogenous genes in distinct, small subsets of the adult nervous system. The set of DNA fragments, each driving a documented expression pattern, will facilitate the generation of additional constructs for manipulating neuronal function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Sistema Nervioso/metabolismo , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Bases de Datos Factuales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Inmunohistoquímica , Microscopía Confocal , Factores de Transcripción/genética , Transcripción Genética
14.
Curr Biol ; 21(10): 825-34, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21549604

RESUMEN

BACKGROUND: The conserved DOS-motif proteins OSM-7 and OSM-11 function as coligands with canonical DSL (Delta, Serrate, and LAG-2) ligands to activate C. elegans Notch receptors during development. We report here that Notch ligands, coligands, and the receptors LIN-12 and GLP-1 regulate two C. elegans behaviors: chemosensory avoidance of octanol and quiescence during molting lethargus. RESULTS: C. elegans lacking osm-7 or osm-11 are defective in their response to octanol. We find that OSM-11 is secreted from hypodermal seam cells into the pseudocoelomic body cavity and acts non-cell autonomously as a diffusible factor. OSM-11 acts with the DSL ligand LAG-2 to activate LIN-12 and GLP-1 Notch receptors in the neurons of adult animals, thereby regulating octanol avoidance response. In adult animals, overexpression of osm-11 and consequent Notch receptor activation induces anachronistic sleep-like quiescence. Perturbation of Notch signaling alters basal activity in adults as well as arousal thresholds and quiescence during molting lethargus. Genetic epistasis studies reveal that Notch signaling regulates quiescence via previously identified circuits and genetic pathways including the egl-4 cGMP-dependent kinase. CONCLUSIONS: Our findings indicate that the conserved Notch pathway modulates behavior in adult C. elegans in response to environmental stress. Additionally, Notch signaling regulates sleep-like quiescence in C. elegans, suggesting that Notch may regulate sleep in other species.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Muda/fisiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Olfato/fisiología , Animales , Larva/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Técnicas Analíticas Microfluídicas , Microscopía Fluorescente , Octanoles , Estrés Fisiológico/fisiología
15.
Mol Biol Cell ; 20(13): 3101-14, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19439450

RESUMEN

A central question in the area of signal transduction is why pathways utilize common components. In the budding yeast Saccharomyces cerevisiae, the HOG and filamentous growth (FG) MAPK pathways require overlapping components but are thought to be induced by different stimuli and specify distinct outputs. To better understand the regulation of the FG pathway, we examined FG in one of yeast's native environments, the grape-producing plant Vitis vinifera. In this setting, different aspects of FG were induced in a temporal manner coupled to the nutrient cycle, which uncovered a multimodal feature of FG pathway signaling. FG pathway activity was modulated by the HOG pathway, which led to the finding that the signaling mucins Msb2p and Hkr1p, which operate at the head of the HOG pathway, differentially regulate the FG pathway. The two mucins exhibited different expression and secretion patterns, and their overproduction induced nonoverlapping sets of target genes. Moreover, Msb2p had a function in cell polarization through the adaptor protein Sho1p that Hkr1p did not. Differential MAPK activation by signaling mucins brings to light a new point of discrimination between MAPK pathways.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Medios de Cultivo/química , Medios de Cultivo/farmacología , Proteínas Activadoras de GTPasa/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Microscopía Fluorescente , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Micelio/genética , Micelio/crecimiento & desarrollo , Análisis de Secuencia por Matrices de Oligonucleótidos , Presión Osmótica , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Sorbitol/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vitis/química , Vitis/microbiología
16.
J Cell Biol ; 181(7): 1073-81, 2008 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-18591427

RESUMEN

Signaling mucins are cell adhesion molecules that activate RAS/RHO guanosine triphosphatases and their effector mitogen-activated protein kinase (MAPK) pathways. We found that the Saccharomyces cerevisiae mucin Msb2p, which functions at the head of the Cdc42p-dependent MAPK pathway that controls filamentous growth, is processed into secreted and cell-associated forms. Cleavage of the extracellular inhibitory domain of Msb2p by the aspartyl protease Yps1p generated the active form of the protein by a mechanism incorporating cellular nutritional status. Activated Msb2p functioned through the tetraspan protein Sho1p to induce MAPK activation as well as cell polarization, which involved the Cdc42p guanine nucleotide exchange factor Cdc24p. We postulate that cleavage-dependent activation is a general feature of signaling mucins, which brings to light a novel regulatory aspect of this class of signaling adhesion molecule.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mucinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transducción de Señal , Ácido Aspártico Endopeptidasas/biosíntesis , Activación Enzimática , Inducción Enzimática , Proteínas Activadoras de GTPasa/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Sistema de Señalización de MAP Quinasas , Péptidos/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/química
17.
Mol Biol Cell ; 19(10): 4167-76, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18685079

RESUMEN

The small GTPase Rab5 has emerged as an important regulator of animal development, and it is essential for endocytic trafficking. However, the mechanisms that link Rab5 activation to cargo entry into early endosomes remain unclear. We show here that Drosophila Rabenosyn (Rbsn) is a Rab5 effector that bridges an interaction between Rab5 and the Sec1/Munc18-family protein Vps45, and we further identify the syntaxin Avalanche (Avl) as a target for Vps45 activity. Rbsn and Vps45, like Avl and Rab5, are specifically localized to early endosomes and are required for endocytosis. Ultrastructural analysis of rbsn, Vps45, avl, and Rab5 null mutant cells, which show identical defects, demonstrates that all four proteins are required for vesicle fusion to form early endosomes. These defects lead to loss of epithelial polarity in mutant tissues, which overproliferate to form neoplastic tumors. This work represents the first characterization of a Rab5 effector as a tumor suppressor, and it provides in vivo evidence for a Rbsn-Vps45 complex on early endosomes that links Rab5 to the SNARE fusion machinery.


Asunto(s)
Proteínas de Drosophila/fisiología , Endosomas/metabolismo , Regulación de la Expresión Génica , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab5/fisiología , Alelos , Animales , Drosophila , Proteínas de Drosophila/metabolismo , Genes Supresores de Tumor , Humanos , Modelos Biológicos , Modelos Genéticos , Fenotipo , Unión Proteica , Proteínas de Transporte Vesicular/fisiología , Proteínas de Unión al GTP rab5/metabolismo
18.
Proc Natl Acad Sci U S A ; 101(43): 15512-7, 2004 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-15492222

RESUMEN

Serotonin (5-HT) modulates synaptic efficacy in the nervous system of vertebrates and invertebrates. In the nematode Caenorhabditis elegans, many behaviors are regulated by 5-HT levels, which are in turn regulated by the presence or absence of food. Here, we show that both food and 5-HT signaling modulate chemosensory avoidance response of octanol in C. elegans, and that this modulation is both rapid and reversible. Sensitivity to octanol is decreased when animals are off food or when 5-HT levels are decreased; conversely, sensitivity is increased when animals are on food or have increased 5-HT signaling. Laser microsurgery and behavioral experiments reveal that sensory input from different subsets of octanol-sensing neurons is selectively used, depending on stimulus strength, feeding status, and 5-HT levels. 5-HT directly targets at least one pair of sensory neurons, and 5-HT signaling requires the Galpha protein GPA-11. Glutamatergic signaling is required for response to octanol, and the GLR-1 glutamate receptor plays an important role in behavioral response off food but not on food. Our results demonstrate that 5-HT modulation of neuronal activity via G protein signaling underlies behavioral plasticity by rapidly altering the functional circuitry of a chemosensory circuit.


Asunto(s)
Conducta Animal , Caenorhabditis elegans/fisiología , Serotonina/fisiología , Animales , Neuronas Aferentes/fisiología , Octanoles/administración & dosificación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA