Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur Heart J ; 41(37): 3549-3560, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33080003

RESUMEN

AIMS: Acute coronary syndromes with intact fibrous cap (IFC-ACS), i.e. caused by coronary plaque erosion, account for approximately one-third of ACS. However, the underlying pathophysiological mechanisms as compared with ACS caused by plaque rupture (RFC-ACS) remain largely undefined. The prospective translational OPTICO-ACS study programme investigates for the first time the microenvironment of ACS-causing culprit lesions (CL) with intact fibrous cap by molecular high-resolution intracoronary imaging and simultaneous local immunological phenotyping. METHODS AND RESULTS: The CL of 170 consecutive ACS patients were investigated by optical coherence tomography (OCT) and simultaneous immunophenotyping by flow cytometric analysis as well as by effector molecule concentration measurements across the culprit lesion gradient (ratio local/systemic levels). Within the study cohort, IFC caused 24.6% of ACS while RFC-ACS caused 75.4% as determined and validated by two independent OCT core laboratories. The IFC-CL were characterized by lower lipid content, less calcification, a thicker overlying fibrous cap, and largely localized near a coronary bifurcation as compared with RFC-CL. The microenvironment of IFC-ACS lesions demonstrated selective enrichment in both CD4+ and CD8+ T-lymphocytes (+8.1% and +11.2%, respectively, both P < 0.05) as compared with RFC-ACS lesions. T-cell-associated extracellular circulating microvesicles (MV) were more pronounced in IFC-ACS lesions and a significantly higher amount of CD8+ T-lymphocytes was detectable in thrombi aspirated from IFC-culprit sites. Furthermore, IFC-ACS lesions showed increased levels of the T-cell effector molecules granzyme A (+22.4%), perforin (+58.8%), and granulysin (+75.4%) as compared with RFC plaques (P < 0.005). Endothelial cells subjected to culture in disturbed laminar flow conditions, i.e. to simulate coronary flow near a bifurcation, demonstrated an enhanced adhesion of CD8+T cells. Finally, both CD8+T cells and their cytotoxic effector molecules caused endothelial cell death, a key potential pathophysiological mechanism in IFC-ACS. CONCLUSIONS: The OPTICO-ACS study emphasizes a novel mechanism in the pathogenesis of IFC-ACS, favouring participation of the adaptive immune system, particularly CD4+ and CD8+ T-cells and their effector molecules. The different immune signatures identified in this study advance the understanding of coronary plaque progression and may provide a basis for future development of personalized therapeutic approaches to ACS with IFC. TRIAL REGISTRATION: The study was registered at clinicalTrials.gov (NCT03129503).


Asunto(s)
Síndrome Coronario Agudo , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Células Endoteliales , Humanos , Placa Aterosclerótica/diagnóstico por imagen , Estudios Prospectivos , Rotura Espontánea , Tomografía de Coherencia Óptica
2.
Stem Cells Int ; 2014: 468927, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25295064

RESUMEN

Obliterative bronchiolitis (OB) remains the most significant cause of death in long-term survival of lung transplantation. Using an established murine heterotopic tracheal allograft model, the effects of different routes of administration of bone marrow-derived multipotent stromal cells (MSCs) on the development of OB were evaluated. Tracheas from BALB/c mice were implanted into the subcutaneous tissue of major histocompatibility complex- (MHC-) disparate C57BL/6 mice. At the time of transplant, bone marrow-derived MSCs were administered either systemically or locally or via a combination of the two routes. The allografts were explanted at various time points after transplantation and were evaluated for epithelial integrity, inflammatory cell infiltration, fibrosis, and luminal obliteration. We found that the most effective route of bone marrow-derived MSC administration is the combination of systemic and local delivery. Treatment of recipient mice with MSCs suppressed neutrophil, macrophage, and T-cell infiltration and reduced fibrosis. These beneficial effects were observed despite lack of significant MSC epithelial engraftment or new epithelial cell generation. Our study suggests that optimal combination of systemic and local delivery of MSCs may ameliorate the development of obliterative airway disease through modulation of immune response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA