Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(2): e2217437120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36598940

RESUMEN

Sheet-like membrane protrusions at the leading edge, termed lamellipodia, drive 2D-cell migration using active actin polymerization. Microspikes comprise actin-filament bundles embedded within lamellipodia, but the molecular mechanisms driving their formation and their potential functional relevance have remained elusive. Microspike formation requires the specific activity of clustered Ena/VASP proteins at their tips to enable processive actin assembly in the presence of capping protein, but the factors and mechanisms mediating Ena/VASP clustering are poorly understood. Systematic analyses of B16-F1 melanoma mutants lacking potential candidate proteins revealed that neither inverse BAR-domain proteins, nor lamellipodin or Abi is essential for clustering, although they differentially contribute to lamellipodial VASP accumulation. In contrast, unconventional myosin-X (MyoX) identified here as proximal to VASP was obligatory for Ena/VASP clustering and microspike formation. Interestingly, and despite the invariable distribution of other relevant marker proteins, the width of lamellipodia in MyoX-KO mutants was significantly reduced as compared with B16-F1 control, suggesting that microspikes contribute to lamellipodium stability. Consistently, MyoX removal caused marked defects in protrusion and random 2D-cell migration. Strikingly, Ena/VASP-deficiency also uncoupled MyoX cluster dynamics from actin assembly in lamellipodia, establishing their tight functional association in microspike formation.


Asunto(s)
Actinas , Sinapsinas , Ratones , Actinas/metabolismo , Movimiento Celular , Miosinas/genética , Miosinas/metabolismo , Fosfoproteínas/metabolismo , Seudópodos/metabolismo , Sinapsinas/metabolismo , Animales , Línea Celular Tumoral
2.
Small ; 18(17): e2106097, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35344274

RESUMEN

Circulating tumor cell (CTC) clusters are associated with increased metastatic potential and worse patient prognosis, but are rare, difficult to count, and poorly characterized biophysically. The PillarX device described here is a bimodular microfluidic device (Pillar-device and an X-magnetic device) to profile single CTCs and clusters from whole blood based on their size, deformability, and epithelial marker expression. Larger, less deformable clusters and large single cells are captured in the Pillar-device and sorted according to pillar gap sizes. Smaller, deformable clusters and single cells are subsequently captured in the X-device and separated based on epithelial marker expression using functionalized magnetic nanoparticles. Clusters of established and primary breast cancer cells with variable degrees of cohesion driven by different cell-cell adhesion protein expression are profiled in the device. Cohesive clusters exhibit a lower deformability as they travel through the pillar array, relative to less cohesive clusters, and have greater collective invasive behavior. The ability of the PillarX device to capture clusters is validated in mouse models and patients of metastatic breast cancer. Thus, this device effectively enumerates and profiles CTC clusters based on their unique geometrical, physical, and biochemical properties, and could form the basis of a novel prognostic clinical tool.


Asunto(s)
Neoplasias de la Mama , Células Neoplásicas Circulantes , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Separación Celular , Femenino , Humanos , Dispositivos Laboratorio en un Chip , Ratones , Células Neoplásicas Circulantes/patología , Pronóstico
3.
Immunity ; 35(3): 388-99, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21835647

RESUMEN

Dendritic cells (DCs) flexibly adapt to different microenvironments by using diverse migration strategies that are ultimately dependent on the dynamics and structural organization of the actin cytoskeleton. Here, we have shown that DCs require the actin capping activity of the signaling adaptor Eps8 to polarize and to form elongated migratory protrusions. DCs from Eps8-deficient mice are impaired in directional and chemotactic migration in 3D in vitro and are delayed in reaching the draining lymph node (DLN) in vivo after inflammatory challenge. Hence, Eps8-deficient mice are unable to mount a contact hypersensitivity response. We have also shown that the DC migratory defect is cell autonomous and that Eps8 is required for the proper architectural organization of the actin meshwork and dynamics of cell protrusions. Yet, Eps8 is not necessary for antigen uptake, processing, and presentation. Thus, we have identified Eps8 as a unique actin capping protein specifically required for DC migration.


Asunto(s)
Proteínas de Capping de la Actina/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas del Citoesqueleto/inmunología , Células Dendríticas/inmunología , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Presentación de Antígeno , Movimiento Celular/inmunología , Proliferación Celular , Células Cultivadas , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Dermatitis por Contacto/inmunología , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología
4.
Nat Mater ; 16(5): 587-596, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28135264

RESUMEN

Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.


Asunto(s)
Endocitosis , Epitelio/metabolismo , Fenómenos Biomecánicos , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Proteínas de Unión al GTP rab5/metabolismo
5.
Biochim Biophys Acta ; 1863(1): 64-76, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26481505

RESUMEN

The pathogenesis of bone metastasis is unclear, and much focus in metastatic biology and therapy relays on epigenetic alterations. Since DNA-methyltransferase blockade with 5-aza-2'-deoxycytidine (dAza) counteracts tumour growth, here we utilized dAza to clarify whether molecular events undergoing epigenetic control were critical for bone metastatization. In particular, we investigated the patterns of secreted-protein acidic and rich in cysteine (SPARC) and of Endothelin 1, affected by DNA methyltransferases in tumours, with the hypothesis that in bone metastasis a coordinate function of SPARC and Endothelin 1, if any occurs, was orchestrated by DNA methylation. To this purpose, we prepared a xenograft model with the clone 1833, derived from human-MDA-MB231 cells, and dAza administration slowed-down metastasis outgrowth. This seemed consequent to the reductions of SPARC and Endothelin 1 at invasive front and in the bone marrow, mostly due to loss of Twist. In the metastasis bulk Snail, partly reduced by dAza, might sustain Endothelin 1-SPARC cooperativity. Both SPARC and Endothelin 1 underwent post-translational control by miRNAs, a molecular mechanism that might explain the in vivo data. Ectopic miR29a reduced SPARC expression also under long-term dAza exposure, while Endothelin 1 down-regulation occurred in the presence of endogenous-miR98 expression. Notably, dAza effects differed depending on in vivo and in vitro conditions. In 1833 cells exposed to 30-days dAza, SPARC-protein level was practically unaffected, while Endothelin 1 induction depended on the 3'-UTR functionality. The blockade of methyltransferases leading to SPARC reduction in vivo, might represent a promising strategy to hamper early steps of the metastatic process affecting the osteogenic niche.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias de la Mama/metabolismo , Metilación de ADN , ADN de Neoplasias/metabolismo , Microambiente Tumoral , Animales , Azacitidina/farmacología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , ADN de Neoplasias/genética , Endotelina-1/biosíntesis , Endotelina-1/genética , Femenino , Humanos , Ratones , Ratones Desnudos , MicroARNs/biosíntesis , MicroARNs/genética , Metástasis de la Neoplasia , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Osteonectina/biosíntesis , Osteonectina/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética
6.
EMBO J ; 32(12): 1730-44, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23685357

RESUMEN

Actin-based remodelling underlies spine structural changes occurring during synaptic plasticity, the process that constantly reshapes the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation. A positive correlation exists between spine shape and synaptic strength and, consistently, abnormalities in spine number and morphology have been described in a number of neurological disorders. In the present study, we demonstrate that the actin-regulating protein, Eps8, is recruited to the spine head during chemically induced long-term potentiation in culture and that inhibition of its actin-capping activity impairs spine enlargement and plasticity. Accordingly, mice lacking Eps8 display immature spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Additionally, we found that reduction in the levels of Eps8 occurs in brains of patients affected by autism compared to controls. Our data reveal the key role of Eps8 actin-capping activity in spine morphogenesis and plasticity and indicate that reductions in actin-capping proteins may characterize forms of intellectual disabilities associated with spine defects.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Actinas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Cognición/fisiología , Espinas Dendríticas/genética , Humanos , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Sinapsis/genética
7.
EMBO J ; 32(20): 2735-50, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24076653

RESUMEN

Filopodia explore the environment, sensing soluble and mechanical cues during directional motility and tissue morphogenesis. How filopodia are initiated and spatially restricted to specific sites on the plasma membrane is still unclear. Here, we show that the membrane deforming and curvature sensing IRSp53 (Insulin Receptor Substrate of 53 kDa) protein slows down actin filament barbed end growth. This inhibition is relieved by CDC42 and counteracted by VASP, which also binds to IRSp53. The VASP:IRSp53 interaction is regulated by activated CDC42 and promotes high-density clustering of VASP, which is required for processive actin filament elongation. The interaction also mediates VASP recruitment to liposomes. In cells, IRSp53 and VASP accumulate at discrete foci at the leading edge, where filopodia are initiated. Genetic removal of IRSp53 impairs the formation of VASP foci, filopodia and chemotactic motility, while IRSp53 null mice display defective wound healing. Thus, IRSp53 dampens barbed end growth. CDC42 activation inhibits this activity and promotes IRSp53-dependent recruitment and clustering of VASP to drive actin assembly. These events result in spatial restriction of VASP filament elongation for initiation of filopodia during cell migration, invasion, and tissue repair.


Asunto(s)
Citoesqueleto de Actina/genética , Actinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/fisiología , Fosfoproteínas/metabolismo , Proteína de Unión al GTP cdc42/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Moléculas de Adhesión Celular/fisiología , Células Cultivadas , Regulación hacia Abajo/genética , Embrión de Mamíferos , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/fisiología , Unión Proteica , Multimerización de Proteína/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
9.
J Cell Sci ; 125(Pt 19): 4543-54, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22767515

RESUMEN

The insulin receptor substrate protein of 53 kDa (IRSp53) is crucially involved in the formation of filopodia and neurites through mechanisms that have only partially been clarified. We have investigated the role of the small scaffold protein LIN7, which interacts with IRSp53. We found that formation of actin-filled protrusions in neuronal NSC34 cells and neurites in neuroblastoma N2A cells depends on motifs mediating the LIN7:IRSp53 association, as both the coexpression of LIN7 with IRSp53 or the expression of the L27-IRSp53 chimera (a fusion protein between IRSp53 and the LIN7L27 domain for plasma membrane protein complexes association) prevented actin-deficient protrusions induced by overexpressed IRSp53, and enhanced the formation of actin-filled protrusions. The regulatory role of LIN7 in IRSp53-mediated extension of filopodia in neuronal N2A cells was demonstrated by live-cell imaging experiments. Moreover, LIN7 silencing prevented the extension of filopodia and neurites, induced by ectopic expression of IRSp53 or serum starvation, respectively, in undifferentiated and differentiated N2A cells. The expression of full-length IRSp53 or the LIN7ΔPDZ mutant lacking the domain for association with IRSp53 was unable to restore neuritogenesis in LIN7-silenced cells. Conversely, defective neuritogenesis could be rescued by the expression of RNAi-resistant full-length LIN7 or chimeric L27-IRSp53. Finally, LIN7 silencing prevented the recruitment of IRSp53 in Triton X-100-insoluble complexes, otherwise occurring in differentiated cells. Collectively these data indicate that LIN7 is a novel regulator of IRSp53, and that the association of these proteins is required to promote the formation of actin-dependent filopodia and neurites.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Seudópodos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Proteínas de la Membrana , Ratones , Proteínas del Tejido Nervioso/química , Neuritas/efectos de los fármacos , Octoxinol/farmacología , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Seudópodos/efectos de los fármacos , Solubilidad , Proteínas de Transporte Vesicular/química
10.
Nat Cell Biol ; 8(12): 1337-47, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17115031

RESUMEN

Actin-crosslinking proteins organize actin into highly dynamic and architecturally diverse subcellular scaffolds that orchestrate a variety of mechanical processes, including lamellipodial and filopodial protrusions in motile cells. How signalling pathways control and coordinate the activity of these crosslinkers is poorly defined. IRSp53, a multi-domain protein that can associate with the Rho-GTPases Rac and Cdc42, participates in these processes mainly through its amino-terminal IMD (IRSp53 and MIM domain). The isolated IMD has actin-bundling activity in vitro and is sufficient to induce filopodia in vivo. However, the manner of regulation of this activity in the full-length protein remains largely unknown. Eps8 is involved in actin dynamics through its actin barbed-ends capping activity and its ability to modulate Rac activity. Moreover, Eps8 binds to IRSp53. Here, we describe a novel actin crosslinking activity of Eps8. Additionally, Eps8 activates and synergizes with IRSp53 in mediating actin bundling in vitro, enhancing IRSp53-dependent membrane extensions in vivo. Cdc42 binds to and controls the cellular distribution of the IRSp53-Eps8 complex, supporting the existence of a Cdc42-IRSp53-Eps8 signalling pathway. Consistently, Cdc42-induced filopodia are inhibited following individual removal of either IRSp53 or Eps8. Collectively, these results support a model whereby the synergic bundling activity of the IRSp53-Eps8 complex, regulated by Cdc42, contributes to the generation of actin bundles, thus promoting filopodial protrusions.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Forma de la Célula , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Unión Proteica , Transporte de Proteínas , Seudópodos/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
12.
PLoS Biol ; 8(6): e1000387, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20532239

RESUMEN

Actin capping and cross-linking proteins regulate the dynamics and architectures of different cellular protrusions. Eps8 is the founding member of a unique family of capping proteins capable of side-binding and bundling actin filaments. However, the structural basis through which Eps8 exerts these functions remains elusive. Here, we combined biochemical, molecular, and genetic approaches with electron microscopy and image analysis to dissect the molecular mechanism responsible for the distinct activities of Eps8. We propose that bundling activity of Eps8 is mainly mediated by a compact four helix bundle, which is contacting three actin subunits along the filament. The capping activity is mainly mediated by a amphipathic helix that binds within the hydrophobic pocket at the barbed ends of actin blocking further addition of actin monomers. Single-point mutagenesis validated these modes of binding, permitting us to dissect Eps8 capping from bundling activity in vitro. We further showed that the capping and bundling activities of Eps8 can be fully dissected in vivo, demonstrating the physiological relevance of the identified Eps8 structural/functional modules. Eps8 controls actin-based motility through its capping activity, while, as a bundler, is essential for proper intestinal morphogenesis of developing Caenorhabditis elegans.


Asunto(s)
Actinas/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Espectrometría de Masas , Microscopía Electrónica , Modelos Moleculares , Unión Proteica , Termodinámica
13.
Elife ; 122023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37747150

RESUMEN

As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nanoscale topography. Here, we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nanoscale deformations. We show that cell stretch and subsequent compression reshape the PM in a way that generates local membrane evaginations in the 100 nm scale. These evaginations are recognized by I-BAR proteins, which triggers a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin polymerization burst subsequently re-flattens the evagination, completing the mechanochemical feedback loop. Our results demonstrate a new mechanosensing mechanism for PM shape homeostasis, with potential applicability in different physiological scenarios.


Asunto(s)
Actinas , Actinas/metabolismo , Membrana Celular/metabolismo , Homeostasis
14.
Cell Rep ; 42(12): 113555, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38088930

RESUMEN

Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) kinases contain elastic domains. ATM also responds to reactive oxygen species (ROS) and ATR to nuclear mechanical stress. Mre11 mediates ATM activation following DNA damage; ATM mutations cause ataxia telangiectasia (A-T). Here, using in vivo imaging, electron microscopy, proteomic, and mechano-biology approaches, we study how ATM responds to mechanical stress. We report that cytoskeleton and ROS, but not Mre11, mediate ATM activation following cell deformation. ATM deficiency causes hyper-stiffness, stress fiber accumulation, Yes-associated protein (YAP) nuclear enrichment, plasma and nuclear membrane alterations during interstitial migration, and H3 hyper-methylation. ATM locates to the actin cytoskeleton and, following cytoskeleton stress, promotes phosphorylation of key cytoskeleton and chromatin regulators. Our data contribute to explain some clinical features of patients with A-T and pinpoint the existence of an integrated mechano-response in which ATM and ATR have distinct roles unrelated to their canonical DDR functions.


Asunto(s)
Ataxia Telangiectasia , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Cromatina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteómica , Proteínas de Unión al ADN/metabolismo , Fosforilación , Daño del ADN , Citoesqueleto/metabolismo
15.
Development ; 136(21): 3657-67, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19820184

RESUMEN

The vertebrate lens provides an excellent model with which to study the mechanisms required for epithelial invagination. In the mouse, the lens forms from the head surface ectoderm. A domain of ectoderm first thickens to form the lens placode and then invaginates to form the lens pit. The epithelium of the lens placode remains in close apposition to the epithelium of the presumptive retina as these structures undergo a coordinated invagination. Here, we show that F-actin-rich basal filopodia that link adjacent presumptive lens and retinal epithelia function as physical tethers that coordinate invagination. The filopodia, most of which originate in the presumptive lens, form at E9.5 when presumptive lens and retinal epithelia first come into close contact, and have retracted by E11.5 when invagination is complete. At E10.5--the lens pit stage--there is approximately one filopodium per epithelial cell. Formation of filopodia is dependent on the Rho family GTPase Cdc42 and the Cdc42 effector IRSp53 (Baiap2). Loss of filopodia results in reduced lens pit invagination. Pharmacological manipulation of the actin-myosin contraction pathway showed that the filopodia can respond rapidly in length to change inter-epithelial distance. These data suggest that the lens-retina inter-epithelial filopodia are a fine-tuning mechanism to assist in lens pit invagination by transmitting the forces between presumptive lens and retina. Although invagination of the archenteron in sea urchins and dorsal closure in Drosophila are known to be partly dependent on filopodia, this mechanism of morphogenesis has not previously been identified in vertebrates.


Asunto(s)
Cristalino/embriología , Seudópodos/metabolismo , Retina/embriología , Actinas/metabolismo , Animales , Quinasa 1 de Adhesión Focal/metabolismo , Cristalino/citología , Ratones , Miosinas/metabolismo , Retina/citología , Organismos Libres de Patógenos Específicos
16.
Nat Cell Biol ; 7(10): 969-76, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16155590

RESUMEN

Neural Wiskott-Aldrich syndrome protein (N-WASP) and WAVE are members of a family of proteins that use the Arp2/3 complex to stimulate actin assembly in actin-based motile processes. By entering into distinct macromolecular complexes, they act as convergent nodes of different signalling pathways. The role of WAVE in generating lamellipodial protrusion during cell migration is well established. Conversely, the precise cellular functions of N-WASP have remained elusive. Here, we report that Abi1, an essential component of the WAVE protein complex, also has a critical role in regulating N-WASP-dependent function. Consistently, Abi1 binds to N-WASP with nanomolar affinity and, cooperating with Cdc42, potently induces N-WASP activity in vitro. Molecular genetic approaches demonstrate that Abi1 and WAVE, but not N-WASP, are essential for Rac-dependent membrane protrusion and macropinocytosis. Conversely, Abi1 and N-WASP, but not WAVE, regulate actin-based vesicular transport, epidermal growth factor receptor (EGFR) endocytosis, and EGFR and transferrin receptor (TfR) cell-surface distribution. Thus, Abi1 is a dual regulator of WAVE and N-WASP activities in specific processes that are dependent on actin dynamics.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Membrana Celular/metabolismo , Proteínas del Citoesqueleto , Receptores ErbB/metabolismo , Células HeLa , Humanos , Receptores de Transferrina/metabolismo , Vesículas Transportadoras/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal del Síndrome de Wiskott-Aldrich/fisiología , Proteína de Unión al GTP cdc42/metabolismo
17.
PLoS Biol ; 7(6): e1000138, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19564905

RESUMEN

The regulation of filopodia plays a crucial role during neuronal development and synaptogenesis. Axonal filopodia, which are known to originate presynaptic specializations, are regulated in response to neurotrophic factors. The structural components of filopodia are actin filaments, whose dynamics and organization are controlled by ensembles of actin-binding proteins. How neurotrophic factors regulate these latter proteins remains, however, poorly defined. Here, using a combination of mouse genetic, biochemical, and cell biological assays, we show that genetic removal of Eps8, an actin-binding and regulatory protein enriched in the growth cones and developing processes of neurons, significantly augments the number and density of vasodilator-stimulated phosphoprotein (VASP)-dependent axonal filopodia. The reintroduction of Eps8 wild type (WT), but not an Eps8 capping-defective mutant, into primary hippocampal neurons restored axonal filopodia to WT levels. We further show that the actin barbed-end capping activity of Eps8 is inhibited by brain-derived neurotrophic factor (BDNF) treatment through MAPK-dependent phosphorylation of Eps8 residues S624 and T628. Additionally, an Eps8 mutant, impaired in the MAPK target sites (S624A/T628A), displays increased association to actin-rich structures, is resistant to BDNF-mediated release from microfilaments, and inhibits BDNF-induced filopodia. The opposite is observed for a phosphomimetic Eps8 (S624E/T628E) mutant. Thus, collectively, our data identify Eps8 as a critical capping protein in the regulation of axonal filopodia and delineate a molecular pathway by which BDNF, through MAPK-dependent phosphorylation of Eps8, stimulates axonal filopodia formation, a process with crucial impacts on neuronal development and synapse formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteínas del Citoesqueleto/metabolismo , Neuronas/efectos de los fármacos , Seudópodos/fisiología , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Axones/metabolismo , Axones/fisiología , Línea Celular , Células Cultivadas , Proteínas del Citoesqueleto/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Interferencia de ARN , Ratas , Transfección
18.
PLoS Comput Biol ; 7(7): e1002088, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21814501

RESUMEN

There is a body of literature that describes the geometry and the physics of filopodia using either stochastic models or partial differential equations and elasticity and coarse-grained theory. Comparatively, there is a paucity of models focusing on the regulation of the network of proteins that control the formation of different actin structures. Using a combination of in-vivo and in-vitro experiments together with a system of ordinary differential equations, we focused on a small number of well-characterized, interacting molecules involved in actin-dependent filopodia formation: the actin remodeler Eps8, whose capping and bundling activities are a function of its ligands, Abi-1 and IRSp53, respectively; VASP and Capping Protein (CP), which exert antagonistic functions in controlling filament elongation. The model emphasizes the essential role of complexes that contain the membrane deforming protein IRSp53, in the process of filopodia initiation. This model accurately accounted for all observations, including a seemingly paradoxical result whereby genetic removal of Eps8 reduced filopodia in HeLa, but increased them in hippocampal neurons, and generated quantitative predictions, which were experimentally verified. The model further permitted us to explain how filopodia are generated in different cellular contexts, depending on the dynamic interaction established by Eps8, IRSp53 and VASP with actin filaments, thus revealing an unexpected plasticity of the signaling network that governs the multifunctional activities of its components in the formation of filopodia.


Asunto(s)
Actinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Seudópodos/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Células HeLa , Hipocampo/citología , Histocitoquímica , Humanos , Immunoblotting , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Neuronas/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/fisiología
19.
PLoS Genet ; 5(10): e1000675, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19798448

RESUMEN

The TOCA family of F-BAR-containing proteins bind to and remodel lipid bilayers via their conserved F-BAR domains, and regulate actin dynamics via their N-Wasp binding SH3 domains. Thus, these proteins are predicted to play a pivotal role in coordinating membrane traffic with actin dynamics during cell migration and tissue morphogenesis. By combining genetic analysis in Caenorhabditis elegans with cellular biochemical experiments in mammalian cells, we showed that: i) loss of CeTOCA proteins reduced the efficiency of Clathrin-mediated endocytosis (CME) in oocytes. Genetic interference with CeTOCAs interacting proteins WSP-1 and WVE-1, and other components of the WVE-1 complex, produced a similar effect. Oocyte endocytosis defects correlated well with reduced egg production in these mutants. ii) CeTOCA proteins localize to cell-cell junctions and are required for proper embryonic morphogenesis, to position hypodermal cells and to organize junctional actin and the junction-associated protein AJM-1. iii) Double mutant analysis indicated that the toca genes act in the same pathway as the nematode homologue of N-WASP/WASP, wsp-1. Furthermore, mammalian TOCA-1 and C. elegans CeTOCAs physically associated with N-WASP and WSP-1 directly, or WAVE2 indirectly via ABI-1. Thus, we propose that TOCA proteins control tissues morphogenesis by coordinating Clathrin-dependent membrane trafficking with WAVE and N-WASP-dependent actin-dynamics.


Asunto(s)
Actinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Epidermis/embriología , Proteínas de la Membrana/metabolismo , Oocitos/crecimiento & desarrollo , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/genética , Epidermis/crecimiento & desarrollo , Epidermis/metabolismo , Femenino , Masculino , Proteínas de la Membrana/genética , Morfogénesis , Oocitos/metabolismo , Unión Proteica , Transporte de Proteínas
20.
Curr Biol ; 18(18): R873-5, 2008 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-18812086

RESUMEN

The Arp2/3 complex is essential for actin nucleation and filament elongation in a variety of intracellular processes. This functional versatility is exerted through the regulation of its activity by nucleation-promoting factors (NPFs). The discovery of a new NPF, WHAMM, reveals unexpected connections between the actin and microtubule cytoskeletons and membrane dynamics during ER-to-Golgi transport.


Asunto(s)
Núcleo Celular/fisiología , Citoesqueleto/fisiología , Microtúbulos/fisiología , Acanthamoeba castellanii/fisiología , Complejo 2-3 Proteico Relacionado con la Actina/fisiología , Animales , Endocitosis/fisiología , Homeostasis , Fagocitosis , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA