Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Patterns (N Y) ; 5(6): 101006, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-39005485

RESUMEN

For healthcare datasets, it is often impossible to combine data samples from multiple sites due to ethical, privacy, or logistical concerns. Federated learning allows for the utilization of powerful machine learning algorithms without requiring the pooling of data. Healthcare data have many simultaneous challenges, such as highly siloed data, class imbalance, missing data, distribution shifts, and non-standardized variables, that require new methodologies to address. Federated learning adds significant methodological complexity to conventional centralized machine learning, requiring distributed optimization, communication between nodes, aggregation of models, and redistribution of models. In this systematic review, we consider all papers on Scopus published between January 2015 and February 2023 that describe new federated learning methodologies for addressing challenges with healthcare data. We reviewed 89 papers meeting these criteria. Significant systemic issues were identified throughout the literature, compromising many methodologies reviewed. We give detailed recommendations to help improve methodology development for federated learning in healthcare.

2.
Commun Med (Lond) ; 3(1): 139, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803172

RESUMEN

BACKGROUND: Classifying samples in incomplete datasets is a common aim for machine learning practitioners, but is non-trivial. Missing data is found in most real-world datasets and these missing values are typically imputed using established methods, followed by classification of the now complete samples. The focus of the machine learning researcher is to optimise the classifier's performance. METHODS: We utilise three simulated and three real-world clinical datasets with different feature types and missingness patterns. Initially, we evaluate how the downstream classifier performance depends on the choice of classifier and imputation methods. We employ ANOVA to quantitatively evaluate how the choice of missingness rate, imputation method, and classifier method influences the performance. Additionally, we compare commonly used methods for assessing imputation quality and introduce a class of discrepancy scores based on the sliced Wasserstein distance. We also assess the stability of the imputations and the interpretability of model built on the imputed data. RESULTS: The performance of the classifier is most affected by the percentage of missingness in the test data, with a considerable performance decline observed as the test missingness rate increases. We also show that the commonly used measures for assessing imputation quality tend to lead to imputed data which poorly matches the underlying data distribution, whereas our new class of discrepancy scores performs much better on this measure. Furthermore, we show that the interpretability of classifier models trained using poorly imputed data is compromised. CONCLUSIONS: It is imperative to consider the quality of the imputation when performing downstream classification as the effects on the classifier can be considerable.


Many artificial intelligence (AI) methods aim to classify samples of data into groups, e.g., patients with disease vs. those without. This often requires datasets to be complete, i.e., that all data has been collected for all samples. However, in clinical practice this is often not the case and some data can be missing. One solution is to 'complete' the dataset using a technique called imputation to replace those missing values. However, assessing how well the imputation method performs is challenging. In this work, we demonstrate why people should care about imputation, develop a new method for assessing imputation quality, and demonstrate that if we build AI models on poorly imputed data, the model can give different results to those we would hope for. Our findings may improve the utility and quality of AI models in the clinic.

3.
IEEE Trans Neural Netw Learn Syst ; 31(9): 3594-3605, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31714239

RESUMEN

Despite their prevalence in neural networks, we still lack a thorough theoretical characterization of rectified linear unit (ReLU) layers. This article aims to further our understanding of ReLU layers by studying how the activation function ReLU interacts with the linear component of the layer and what role this interaction plays in the success of the neural network in achieving its intended task. To this end, we introduce two new tools: ReLU singular values of operators and the Gaussian mean width of operators. By presenting, on the one hand, theoretical justifications, results, and interpretations of these two concepts and, on the other hand, numerical experiments and results of the ReLU singular values and the Gaussian mean width being applied to trained neural networks, we hope to give a comprehensive, singular-value-centric view of ReLU layers. We find that ReLU singular values and the Gaussian mean width do not only enable theoretical insights but also provide one with metrics that seem promising for practical applications. In particular, these measures can be used to distinguish correctly and incorrectly classified data as it traverses the network. We conclude by introducing two tools based on our findings: double layers and harmonic pruning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA