Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 182(4): 1009-1026.e29, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32730809

RESUMEN

Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.


Asunto(s)
Cisteína/metabolismo , Ligandos , Linfocitos T/metabolismo , Acetamidas/química , Acetamidas/farmacología , Acrilamidas/química , Acrilamidas/farmacología , Células Cultivadas , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Activación de Linfocitos/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteolisis/efectos de los fármacos , Proteoma/química , Proteoma/metabolismo , Estereoisomerismo , Linfocitos T/citología , Linfocitos T/inmunología , Ubiquitina-Proteína Ligasas/metabolismo
2.
Cell ; 171(3): 696-709.e23, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28965760

RESUMEN

The transcription factor NRF2 is a master regulator of the cellular antioxidant response, and it is often genetically activated in non-small-cell lung cancers (NSCLCs) by, for instance, mutations in the negative regulator KEAP1. While direct pharmacological inhibition of NRF2 has proven challenging, its aberrant activation rewires biochemical networks in cancer cells that may create special vulnerabilities. Here, we use chemical proteomics to map druggable proteins that are selectively expressed in KEAP1-mutant NSCLC cells. Principal among these is NR0B1, an atypical orphan nuclear receptor that we show engages in a multimeric protein complex to regulate the transcriptional output of KEAP1-mutant NSCLC cells. We further identify small molecules that covalently target a conserved cysteine within the NR0B1 protein interaction domain, and we demonstrate that these compounds disrupt NR0B1 complexes and impair the anchorage-independent growth of KEAP1-mutant cancer cells. Our findings designate NR0B1 as a druggable transcriptional regulator that supports NRF2-dependent lung cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/química , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Proteoma/análisis , Transcriptoma , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Cisteína/metabolismo , Receptor Nuclear Huérfano DAX-1/metabolismo , Redes Reguladoras de Genes , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ligandos , Neoplasias Pulmonares/metabolismo
3.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37084731

RESUMEN

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Asunto(s)
Proteómica , Factores de Transcripción , Humanos , Proteómica/métodos , Cisteína/metabolismo , Ligandos
4.
Cell ; 150(2): 426-40, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22817901

RESUMEN

Caspase proteases are principal mediators of apoptosis, where they cleave hundreds of proteins. Phosphorylation also plays an important role in apoptosis, although the extent to which proteolytic and phosphorylation pathways crosstalk during programmed cell death remains poorly understood. Using a quantitative proteomic platform that integrates phosphorylation sites into the topographical maps of proteins, we identify a cohort of over 500 apoptosis-specific phosphorylation events and show that they are enriched on cleaved proteins and clustered around sites of caspase proteolysis. We find that caspase cleavage can expose new sites for phosphorylation, and, conversely, that phosphorylation at the +3 position of cleavage sites can directly promote substrate proteolysis by caspase-8. This study provides a global portrait of the apoptotic phosphoproteome, revealing heretofore unrecognized forms of functional crosstalk between phosphorylation and caspase proteolytic pathways that lead to enhanced rates of protein cleavage and the unveiling of new sites for phosphorylation.


Asunto(s)
Apoptosis , Proteoma/análisis , Proteoma/metabolismo , Caspasas/metabolismo , Humanos , Modelos Moleculares , Fosforilación , Proteolisis , Transducción de Señal
5.
Nat Methods ; 19(3): 341-352, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35228727

RESUMEN

Proteomics has revealed that the ~20,000 human genes engender a far greater number of proteins, or proteoforms, that are diversified in large part by post-translational modifications (PTMs). How such PTMs affect protein structure and function is an active area of research but remains technically challenging to assess on a proteome-wide scale. Here, we describe a chemical proteomic method to quantitatively relate serine/threonine phosphorylation to changes in the reactivity of cysteine residues, a parameter that can affect the potential for cysteines to be post-translationally modified or engaged by covalent drugs. Leveraging the extensive high-stoichiometry phosphorylation occurring in mitotic cells, we discover numerous cysteines that exhibit phosphorylation-dependent changes in reactivity on diverse proteins enriched in cell cycle regulatory pathways. The discovery of bidirectional changes in cysteine reactivity often occurring in proximity to serine/threonine phosphorylation events points to the broad impact of phosphorylation on the chemical reactivity of proteins and the future potential to create small-molecule probes that differentially target proteoforms with PTMs.


Asunto(s)
Cisteína , Proteómica , Cisteína/química , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Proteómica/métodos , Serina , Treonina/metabolismo
6.
Nat Chem Biol ; 17(8): 856-864, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33927411

RESUMEN

Multiple Ras proteins, including N-Ras, depend on a palmitoylation/depalmitoylation cycle to regulate their subcellular trafficking and oncogenicity. General lipase inhibitors such as Palmostatin M (Palm M) block N-Ras depalmitoylation, but lack specificity and target several enzymes displaying depalmitoylase activity. Here, we describe ABD957, a potent and selective covalent inhibitor of the ABHD17 family of depalmitoylases, and show that this compound impairs N-Ras depalmitoylation in human acute myeloid leukemia (AML) cells. ABD957 produced partial effects on N-Ras palmitoylation compared with Palm M, but was much more selective across the proteome, reflecting a plasma membrane-delineated action on dynamically palmitoylated proteins. Finally, ABD957 impaired N-Ras signaling and the growth of NRAS-mutant AML cells in a manner that synergizes with MAP kinase kinase (MEK) inhibition. Our findings uncover a surprisingly restricted role for ABHD17 enzymes as regulators of the N-Ras palmitoylation cycle and suggest that ABHD17 inhibitors may have value as targeted therapies for NRAS-mutant cancers.


Asunto(s)
Membrana Celular/metabolismo , Hidrolasas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Proteínas ras/metabolismo , Proliferación Celular , Células Cultivadas , Humanos , Leucemia Mieloide Aguda/patología , Leucemia Promielocítica Aguda/patología , Lipoilación , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular
7.
Cell ; 134(4): 679-91, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18724940

RESUMEN

Proteolysis is a key regulatory process that promotes the (in)activation, translocation, and/or degradation of proteins. As such, there is considerable interest in methods to comprehensively characterize proteolytic pathways in biological systems. Here, we describe a robust and versatile proteomic platform that enables direct visualization of the topography and magnitude of proteolytic events on a global scale. We use this method to generate a proteome-wide map of proteolytic events induced by the intrinsic apoptotic pathway. This profile contained 91 characterized caspase substrates as well as 170 additional proteins not previously known to be cleaved during apoptosis. Surprisingly, the vast majority of proteolyzed proteins, regardless of the extent of cleavage, yielded persistent fragments that correspond to discrete protein domains, suggesting that the generation of active effector proteins may be a principal function of apoptotic proteolytic cascades.


Asunto(s)
Apoptosis , Péptido Hidrolasas/metabolismo , Proteínas/metabolismo , Proteómica/métodos , Humanos , Células Jurkat , Espectrometría de Masas
8.
Circ Res ; 127(8): 997-1022, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32762496

RESUMEN

RATIONALE: Plaque rupture is the proximate cause of most myocardial infarctions and many strokes. However, the molecular mechanisms that precipitate plaque rupture are unknown. OBJECTIVE: By applying proteomic and bioinformatic approaches in mouse models of protease-induced plaque rupture and in ruptured human plaques, we aimed to illuminate biochemical pathways through which proteolysis causes plaque rupture and identify substrates that are cleaved in ruptured plaques. METHODS AND RESULTS: We performed shotgun proteomics analyses of aortas of transgenic mice with macrophage-specific overexpression of urokinase (SR-uPA+/0 mice) and of SR-uPA+/0 bone marrow transplant recipients, and we used bioinformatic tools to evaluate protein abundance and functional category enrichment in these aortas. In parallel, we performed shotgun proteomics and bioinformatics studies on extracts of ruptured and stable areas of freshly harvested human carotid plaques. We also applied a separate protein-analysis method (protein topography and migration analysis platform) to attempt to identify substrates and proteolytic fragments in mouse and human plaque extracts. Approximately 10% of extracted aortic proteins were reproducibly altered in SR-uPA+/0 aortas. Proteases, inflammatory signaling molecules, as well as proteins involved with cell adhesion, the cytoskeleton, and apoptosis, were increased. ECM (Extracellular matrix) proteins, including basement-membrane proteins, were decreased. Approximately 40% of proteins were altered in ruptured versus stable areas of human carotid plaques, including many of the same functional categories that were altered in SR-uPA+/0 aortas. Collagens were minimally altered in SR-uPA+/0 aortas and ruptured human plaques; however, several basement-membrane proteins were reduced in both SR-uPA+/0 aortas and ruptured human plaques. Protein topography and migration analysis platform did not detect robust increases in proteolytic fragments of ECM proteins in either setting. CONCLUSIONS: Parallel studies of SR-uPA+/0 mouse aortas and human plaques identify mechanisms that connect proteolysis with plaque rupture, including inflammation, basement-membrane protein loss, and apoptosis. Basement-membrane protein loss is a prominent feature of ruptured human plaques, suggesting a major role for basement-membrane proteins in maintaining plaque stability.


Asunto(s)
Aorta/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Arterias Carótidas/metabolismo , Placa Aterosclerótica , Proteoma , Proteómica , Anciano , Anciano de 80 o más Años , Animales , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas , Biología Computacional , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Persona de Mediana Edad , Mapas de Interacción de Proteínas , Receptores Depuradores/genética , Rotura Espontánea , Transducción de Señal , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
9.
J Am Chem Soc ; 143(13): 5141-5149, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33783207

RESUMEN

Ligand-induced protein degradation has emerged as a compelling approach to promote the targeted elimination of proteins from cells by directing these proteins to the ubiquitin-proteasome machinery. So far, only a limited number of E3 ligases have been found to support ligand-induced protein degradation, reflecting a dearth of E3-binding compounds for proteolysis-targeting chimera (PROTAC) design. Here, we describe a functional screening strategy performed with a focused library of candidate electrophilic PROTACs to discover bifunctional compounds that degrade proteins in human cells by covalently engaging E3 ligases. Mechanistic studies revealed that the electrophilic PROTACs act through modifying specific cysteines in DCAF11, a poorly characterized E3 ligase substrate adaptor. We further show that DCAF11-directed electrophilic PROTACs can degrade multiple endogenous proteins, including FBKP12 and the androgen receptor, in human prostate cancer cells. Our findings designate DCAF11 as an E3 ligase capable of supporting ligand-induced protein degradation via electrophilic PROTACs.


Asunto(s)
Complejos de Ubiquitina-Proteína Ligasa/fisiología , Línea Celular Tumoral , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Receptores Androgénicos/metabolismo , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
10.
Nat Chem Biol ; 15(7): 737-746, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209349

RESUMEN

Ligand-dependent protein degradation has emerged as a compelling strategy to pharmacologically control the protein content of cells. So far, however, only a limited number of E3 ligases have been found to support this process. Here, we use a chemical proteomic strategy that leverages broadly reactive, cysteine-directed electrophilic fragments coupled to selective ligands for intracellular proteins (for example, SLF for FKBP12, JQ1 for BRD4) to screen for heterobifunctional degrader compounds (or proteolysis targeting chimeras, PROTACs) that operate by covalent adduction of E3 ligases. This approach identified DCAF16-a poorly characterized substrate recognition component of CUL4-DDB1 E3 ubiquitin ligases-as a target of electrophilic PROTACs that promote the nuclear-restricted degradation of proteins. We find that only a modest fraction (~10-40%) of DCAF16 needs to be modified to support protein degradation, pointing to the potential for electrophilic PROTACs to induce neosubstrate degradation without substantially perturbing the function of the participating E3 ligase.


Asunto(s)
Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Ligandos , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
11.
Tetrahedron Lett ; 742021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34764521

RESUMEN

Non-small-cell lung cancer (NSCLC) is a major disease that accounts for 85% of all lung cancer cases which claimed around 1.8 billion lives worldwide in 2020. Tyrosine kinase inhibitors (TKIs) that target EGFR have been used for the treatment of NSCLC, but often develop drug resistance, and the covalent inhibitor AZD9291 has been developed to tackle the problem of drug resistance mediated by the T790M EGFR mutation; however, there is a side effect of hyperglycemia that may be due to off-target activity. This study examines analogues of AZD9291 by chemical proteomics, identifying analogues that maintain T790M-EGFR engagement while showing reduced cross-reactivity with off-targets.

12.
Artículo en Inglés | MEDLINE | ID: mdl-30420476

RESUMEN

At sufficient concentrations, antibiotics effectively eradicate many bacterial infections. However, during therapy, bacteria are unavoidably exposed to lower antibiotic concentrations, and sub-MIC exposure can result in a wide variety of other effects, including the induction of virulence, which can complicate therapy, or horizontal gene transfer (HGT), which can accelerate the spread of resistance genes. Bacterial type I signal peptidase (SPase) is an essential protein that acts at the final step of the general secretory pathway. This pathway is required for the secretion of many proteins, including many required for virulence, and the arylomycins are a class of natural product antibiotics that target SPase. Here, we investigated the consequences of exposing Escherichia coli cultures to sub-MIC levels of an arylomycin. Using multidimensional protein identification technology mass spectrometry, we found that arylomycin treatment inhibits the proper extracytoplasmic localization of many proteins, both those that appear to be SPase substrates and several that do not. The identified proteins are involved in a broad range of extracytoplasmic processes and include a number of virulence factors. The effects of arylomycin on several processes required for virulence were then individually examined, and we found that, at even sub-MIC levels, the arylomycins potently inhibit flagellation, motility, biofilm formation, and the dissemination of antibiotic resistance via HGT. Thus, we conclude that the arylomycins represent promising novel therapeutics with the potential to eradicate infections while simultaneously reducing virulence and the dissemination of resistance.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas Bacterianas/genética , Diseño de Fármacos , Farmacorresistencia Microbiana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Virulencia
13.
Nat Methods ; 13(10): 883-889, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27617390

RESUMEN

Phenotype-based small-molecule screening is a powerful method to identify molecules that regulate cellular functions. However, such screens are generally performed in vitro under conditions that do not necessarily model complex physiological conditions or disease states. Here, we use molecular cell barcoding to enable direct in vivo phenotypic screening of small-molecule libraries. The multiplexed nature of this approach allows rapid in vivo analysis of hundreds to thousands of compounds. Using this platform, we screened >700 covalent inhibitors directed toward hydrolases for their effect on pancreatic cancer metastatic seeding. We identified multiple hits and confirmed the relevant target of one compound as the lipase ABHD6. Pharmacological and genetic studies confirmed the role of this enzyme as a regulator of metastatic fitness. Our results highlight the applicability of this multiplexed screening platform for investigating complex processes in vivo.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Imagen Molecular/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Ratones , Ratones SCID , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/genética , Trasplante de Neoplasias , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología
14.
Nat Chem Biol ; 11(2): 164-71, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25580854

RESUMEN

Lysophosphatidylserines (lyso-PSs) are a class of signaling lipids that regulate immunological and neurological processes. The metabolism of lyso-PSs remains poorly understood in vivo. Recently, we determined that ABHD12 is a major brain lyso-PS lipase, implicating lyso-PSs in the neurological disease polyneuropathy, hearing loss, ataxia, retinitis pigmentosa and cataract (PHARC), which is caused by null mutations in the ABHD12 gene. Here, we couple activity-based profiling with pharmacological and genetic methods to annotate the poorly characterized enzyme ABHD16A as a phosphatidylserine (PS) lipase that generates lyso-PS in mammalian systems. We describe a small-molecule inhibitor of ABHD16A that depletes lyso-PSs from cells, including lymphoblasts derived from subjects with PHARC. In mouse macrophages, disruption of ABHD12 and ABHD16A respectively increases and decreases both lyso-PSs and lipopolysaccharide-induced cytokine production. Finally, Abhd16a(-/-) mice have decreased brain lyso-PSs, which runs counter to the elevation in lyso-PS in Abhd12(-/-) mice. Our findings illuminate an ABHD16A-ABHD12 axis that dynamically regulates lyso-PS metabolism in vivo, designating these enzymes as potential targets for treating neuroimmunological disorders.


Asunto(s)
Factores Inmunológicos/metabolismo , Lisofosfolípidos/metabolismo , Monoacilglicerol Lipasas/genética , Fosfolipasas/genética , Animales , Encéfalo/enzimología , Encéfalo/inmunología , Encéfalo/metabolismo , Línea Celular , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Factores Inmunológicos/inmunología , Lisofosfolípidos/inmunología , Macrófagos/enzimología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Noqueados , Mutación , Fosfolipasas/antagonistas & inhibidores
15.
Proc Natl Acad Sci U S A ; 111(41): 14924-9, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25267624

RESUMEN

Complex hereditary spastic paraplegia (HSP) is a genetic disorder that causes lower limb spasticity and weakness and intellectual disability. Deleterious mutations in the poorly characterized serine hydrolase DDHD2 are a causative basis for recessive complex HSP. DDHD2 exhibits phospholipase activity in vitro, but its endogenous substrates and biochemical functions remain unknown. Here, we report the development of DDHD2(-/-) mice and a selective, in vivo-active DDHD2 inhibitor and their use in combination with mass spectrometry-based lipidomics to discover that DDHD2 regulates brain triglycerides (triacylglycerols, or TAGs). DDHD2(-/-) mice show age-dependent TAG elevations in the central nervous system, but not in several peripheral tissues. Large lipid droplets accumulated in DDHD2(-/-) brains and were localized primarily to the intracellular compartments of neurons. These metabolic changes were accompanied by impairments in motor and cognitive function. Recombinant DDHD2 displays TAG hydrolase activity, and TAGs accumulated in the brains of wild-type mice treated subchronically with a selective DDHD2 inhibitor. These findings, taken together, indicate that the central nervous system possesses a specialized pathway for metabolizing TAGs, disruption of which leads to massive lipid accumulation in neurons and complex HSP syndrome.


Asunto(s)
Lipasa/metabolismo , Fosfolipasas A1/metabolismo , Paraplejía Espástica Hereditaria/enzimología , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Cognición , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Eliminación de Gen , Marcación de Gen , Células HEK293 , Humanos , Lipasa/antagonistas & inhibidores , Gotas Lipídicas/metabolismo , Gotas Lipídicas/ultraestructura , Locomoción , Ratones Endogámicos C57BL , Neuronas/metabolismo , Fosfolipasas , Fosfolipasas A1/antagonistas & inhibidores , Fosfolipasas A1/deficiencia , Reproducibilidad de los Resultados , Paraplejía Espástica Hereditaria/genética , Triglicéridos/metabolismo
16.
Nat Chem Biol ; 10(9): 760-767, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25038787

RESUMEN

Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active sites have emerged as valuable probes and approved drugs. Many protein classes, however, have functional cysteines, and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative MS to globally map the targets, both specific and nonspecific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent nonkinase proteins that, notably, have conserved active site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target-independent cell death conjointly occur. Our findings, taken together, provide an experimental road map to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Proteoma/genética , Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisteína/química , Genes erbB-1/genética , Humanos , Cinética , Piperidinas , Proteínas Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
17.
Chembiochem ; 13(14): 2082-93, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-22907802

RESUMEN

The serine hydrolases constitute a large class of enzymes that play important roles in physiology. There is great interest in the development of potent and selective pharmacological inhibitors of these proteins. Traditional active-site inhibitors often have limited selectivity within this superfamily and are tedious and expensive to discover. Using the serine hydrolase RBBP9 as a model target, we designed a rapid and relatively inexpensive route to highly selective peptoid-based inhibitors that can be activated by visible light. This technology provides rapid access to photo-activated tool compounds capable of selectively blocking the function of particular serine hydrolases.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Luz , Proteínas de Neoplasias/antagonistas & inhibidores , Dominio Catalítico , Proteínas de Ciclo Celular/metabolismo , Inhibidores Enzimáticos/metabolismo , Eosina Amarillenta-(YS)/química , Fluoresceína/química , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Magnetismo , Proteínas de Neoplasias/metabolismo , Peptoides/síntesis química , Peptoides/química , Unión Proteica , Proteoma/metabolismo , Rutenio/química
18.
Nat Chem ; 13(11): 1081-1092, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34504315

RESUMEN

Recent advances in chemical proteomics have begun to characterize the reactivity and ligandability of lysines on a global scale. Yet, only a limited diversity of aminophilic electrophiles have been evaluated for interactions with the lysine proteome. Here, we report an in-depth profiling of >30 uncharted aminophilic chemotypes that greatly expands the content of ligandable lysines in human proteins. Aminophilic electrophiles showed disparate proteomic reactivities that range from selective interactions with a handful of lysines to, for a set of dicarboxaldehyde fragments, remarkably broad engagement of the covalent small-molecule-lysine interactions captured by the entire library. We used these latter 'scout' electrophiles to efficiently map ligandable lysines in primary human immune cells under stimulatory conditions. Finally, we show that aminophilic compounds perturb diverse biochemical functions through site-selective modification of lysines in proteins, including protein-RNA interactions implicated in innate immune responses. These findings support the broad potential of covalent chemistry for targeting functional lysines in the human proteome.


Asunto(s)
Lisina/química , Proteoma/química , Células HEK293 , Humanos , Ligandos , Proteómica/métodos , Relación Estructura-Actividad
19.
J Proteome Res ; 9(12): 6689-95, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20919742

RESUMEN

LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, that are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 coimmunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not coimmunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/análisis , Proteómica/métodos , Receptores de LDL/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Células CHO , Línea Celular , Cromatografía Liquida , Cricetinae , Cricetulus , Immunoblotting , Inmunoprecipitación , Hígado/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Macrófagos/citología , Macrófagos/metabolismo , Espectrometría de Masas , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-1/metabolismo , Unión Proteica , Interferencia de ARN , Receptores de Superficie Celular/metabolismo , Receptores de LDL/genética , Semaforinas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética
20.
Nat Chem ; 11(12): 1113-1123, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659311

RESUMEN

A fundamental challenge in chemical biology and medicine is to understand and expand the fraction of the human proteome that can be targeted by small molecules. We recently described a strategy that integrates fragment-based ligand discovery with chemical proteomics to furnish global portraits of reversible small-molecule/protein interactions in human cells. Excavating clear structure-activity relationships from these 'ligandability' maps, however, was confounded by the distinct physicochemical properties and corresponding overall protein-binding potential of individual fragments. Here, we describe a compelling solution to this problem by introducing a next-generation set of fully functionalized fragments differing only in absolute stereochemistry. Using these enantiomeric probe pairs, or 'enantioprobes', we identify numerous stereoselective protein-fragment interactions in cells and show that these interactions occur at functional sites on proteins from diverse classes. Our findings thus indicate that incorporating chirality into fully functionalized fragment libraries provides a robust and streamlined method to discover ligandable proteins in cells.


Asunto(s)
Sondas Moleculares/química , Proteínas/química , Proteoma/química , Bibliotecas de Moléculas Pequeñas/química , Humanos , Ligandos , Estructura Molecular , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA