Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 31(7): 2172-2188, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35092102

RESUMEN

Invertebrates are important for restoration processes as they are key drivers of many landscape-scale ecosystem functions; including pollination, nutrient cycling and soil formation. However, invertebrates are often overlooked in restoration monitoring because they are highly diverse, poorly described, and time-consuming to survey, and require increasingly scarce taxonomic expertise to enable identification. DNA metabarcoding is a relatively new tool for rapid survey that is able to address some of these concerns, and provide information about the taxa with which invertebrates are interacting via food webs and habitat. Here, we evaluate how invertebrate communities may be used to determine ecosystem trajectories during restoration. We collected ground-dwelling and airborne invertebrates across chronosequences of mine-site restoration in three ecologically disparate locations in Western Australia and identified invertebrate and plant communities using DNA metabarcoding. Ground-dwelling invertebrates showed the clearest restoration signals, with communities becoming more similar to reference communities over time. These patterns were weaker in airborne invertebrates, which have higher dispersal abilities and therefore less local fidelity to environmental conditions. Although we detected directional changes in community composition indicative of invertebrate recovery, patterns observed were inconsistent between study locations. The inclusion of plant assays allowed identification of plant species, as well as potential food sources and habitat. We demonstrate that DNA metabarcoding of invertebrate communities can be used to evaluate restoration trajectories. Testing and incorporating new monitoring techniques such as DNA metabarcoding is critical to improving restoration outcomes.


Asunto(s)
Código de Barras del ADN Taxonómico , Ecosistema , Animales , Biodiversidad , ADN , Invertebrados/genética , Plantas/genética
2.
Ann Bot ; 129(6): 669-678, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35247265

RESUMEN

BACKGROUND AND AIMS: Many terrestrial orchids have an obligate dependence on their mycorrhizal associations for nutrient acquisition, particularly during germination and early seedling growth. Though important in plant growth and development, phosphorus (P) nutrition studies in mixotrophic orchids have been limited to only a few orchid species and their fungal symbionts. For the first time, we demonstrate the role of a range of fungi in the acquisition and transport of inorganic P to four phylogenetically distinct green-leaved terrestrial orchid species (Diuris magnifica, Disa bracteata, Pterostylis sanguinea and Microtis media subsp. media) that naturally grow in P-impoverished soils. METHODS: Mycorrhizal P uptake and transfer to orchids was determined and visualized using agar microcosms with a diffusion barrier between P source (33P orthophosphate) and orchid seedlings, allowing extramatrical hyphae to reach the source. KEY RESULTS: Extramatrical hyphae of the studied orchid species were effective in capturing and transporting inorganic P into the plant. Following 7 d of exposure, between 0.5 % (D. bracteata) and 47 % (D. magnifica) of the P supplied was transported to the plants (at rates between 0.001 and 0.097 fmol h-1). This experimental approach was capable of distinguishing species based on their P-foraging efficiency, and highlighted the role that fungi play in P nutrition during early seedling development. CONCLUSIONS: Our study shows that orchids occurring naturally on P-impoverished soils can obtain significant amounts of inorganic P from their mycorrhizal partners, and significantly more uptake of P supplied than previously shown in other green-leaved orchids. These results provide support for differences in mycorrhiza-mediated P acquisition between orchid species and fungal symbionts in green-leaved orchids at the seedling stage. The plant-fungus combinations of this study also provide evidence for plant-mediated niche differentiation occurring, with ecological implications in P-limited systems.


Asunto(s)
Basidiomycota , Micorrizas , Orchidaceae , Orchidaceae/microbiología , Fósforo , Plantones/microbiología , Suelo , Simbiosis
3.
Ecol Lett ; 23(12): 1733-1735, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32945104

RESUMEN

Ant Forest, a mobile app developed by the monolithic Alibaba Group, is greening individuals' daily activities and transforming human capacity to reverse global environmental degradation. Over 500 million e-trees are being cultivated every day in China using Ant Forest, and over 122 million real trees have been planted over more than 112 000 ha of degraded land. Ant Forest showcases how internet technology innovation combined with digital financing and philanthropy is contributing to solving environmental issues while attracting and retaining customer loyalty. This powerful business model has the potential to spread to all manner of environmental outcomes.


Asunto(s)
Planetas , Árboles , China , Ecosistema , Bosques , Humanos
4.
Oecologia ; 193(4): 843-855, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32816111

RESUMEN

Plants that produce specialised cluster roots, which mobilise large quantities of poorly available nutrients such as phosphorus (P), can provide a benefit to neighbouring plants that produce roots in the cluster rhizosphere, as demonstrated previously in pot studies. To be effective, such roots must be present within the short time of peak cluster activity. We tested if this requirement is met, and quantified potential P benefits, in a hyperdiverse Mediterranean woodland of southwest Australia where cluster-rooted species are prominent. Using minirhizotrons, we monitored root dynamics during the wet season in the natural habitat. We found non-cluster roots intermingling with all 57 of the observed cluster roots of the studied tree species, Banksia attenuata. Almost all (95%) of these cases were observed in a high-moisture treatment simulating the 45-year average, but not present when we intercepted some of the rainfall. We estimate that cluster-root activity can increase P availability to intermingling roots to a theoretical maximum of 80% of total P in the studied soil. Due to their high P-remobilisation efficiency (89%), which results from P rapidly being relocated from cluster roots within the plant, senesced Banksia cluster roots are a negligible P source for other roots. We conclude that, rather than serving as a P source, it is the cluster-root activity, particularly the exudation of carboxylates, that may improve the coexistence of interacting species that are capable of root intermingling, thus potentially promoting species diversity in nutrient-poor habitats, and that this mechanism will be less effective in a drying climate.


Asunto(s)
Fósforo , Proteaceae , Australia , Raíces de Plantas , Rizosfera , Suelo
5.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708125

RESUMEN

Carnivorous plants from the Lentibulariaceae form a variety of standard and novel vegetative organs and survive unfavorable environmental conditions. Within Genlisea, only G. tuberosa, from the Brazilian Cerrado, formed tubers, while Utricularia menziesii is the only member of the genus to form seasonally dormant tubers. We aimed to examine and compare the tuber structure of two taxonomically and phylogenetically divergent terrestrial carnivorous plants: Genlisea tuberosa and Utricularia menziesii. Additionally, we analyzed tubers of U. mannii. We constructed phylogenetic trees using chloroplast genes matK/trnK and rbcL and used studied characters for ancestral state reconstruction. All examined species contained mainly starch as histologically observable reserves. The ancestral state reconstruction showed that specialized organs such as turions evolved once and tubers at least 12 times from stolons in Lentibulariaceae. Different from other clades, tubers probably evolved from thick stolons for sect. Orchidioides and both structures are primarily water storage structures. In contrast to species from section Orchidioides, G. tuberosa, U. menziesii and U. mannii form starchy tubers. In G. tuberosa and U. menziesii, underground tubers provide a perennating bud bank that protects the species in their fire-prone and seasonally desiccating environments.


Asunto(s)
Planta Carnívora/anatomía & histología , Planta Carnívora/genética , Cloroplastos/genética , Lamiales/genética , Tubérculos de la Planta/anatomía & histología , Estrés Fisiológico/fisiología , Planta Carnívora/citología , Planta Carnívora/ultraestructura , Lamiales/anatomía & histología , Lamiales/citología , Lamiales/ultraestructura , Microscopía Electrónica de Rastreo , Filogenia , Tubérculos de la Planta/citología , Tubérculos de la Planta/genética , Tubérculos de la Planta/ultraestructura , Almidón/metabolismo , Estrés Fisiológico/genética , Agua/metabolismo
6.
Ann Bot ; 124(1): 65-76, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31329814

RESUMEN

BACKGROUND AND AIMS: Little is known about the evolutionary and ecological drivers of carnivory in plants, particularly for those terrestrial species that do not occur in typical swamp or bog habitats. The Mediterranean endemic Drosophyllum lusitanicum (Drosophyllaceae) is one of very few terrestrial carnivorous plant species outside of Australia to occur in seasonally dry, fire-prone habitats, and is thus an ecological rarity. Here we assess the nutritional benefits of prey capture for D. lusitanicum under differing levels of soil fertility in situ. METHODS: We measured the total nitrogen and stable nitrogen and carbon isotope ratios of D. lusitanicum leaves, neighbouring non-carnivorous plant leaves, and groups of insect prey in three populations in southern Spain. We calculated trophic enrichment (ε15N) and estimated the proportion of prey-derived nitrogen (%Nprey) in D. lusitanicum leaves, and related these factors to soil chemistry parameters measured at each site. KEY RESULTS: In all three populations studied, D. lusitanicum plants were significantly isotopically enriched compared with neighbouring non-carnivorous plants. We estimated that D. lusitanicum gain ~36 %Nprey at the Puerto de Gáliz site, ~54 %Nprey at the Sierra Carbonera site and ~75 %Nprey at the Montera del Torero site. Enrichment in N isotope (ε15N) differed considerably among sites; however, it was not found to be significantly related to log10(soil N), log10(soil P) or log10(soil K). CONCLUSIONS: Drosophyllum lusitanicum individuals gain a significant nutritional benefit from captured prey in their natural habitat, exhibiting proportions of prey-derived nitrogen that are similar to those recorded for carnivorous plants occurring in more mesic environments. This study adds to the growing body of literature confirming that carnivory is a highly beneficial nutritional strategy not only in mesic habitats but also in seasonally dry environments, and provides insights to inform conservation strategies for D. lusitanicum in situ.


Asunto(s)
Carnivoría , Humedales , Animales , Australia , Plantas , España
7.
Ann Bot ; 123(1): 95-106, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30052753

RESUMEN

Background and Aims: Substantial evidence supports the hypothesis that morphophysiological dormancy (MPD) is the basal kind of seed dormancy in the angiosperms. However, only physiological dormancy (PD) is reported in seeds of the ANA-grade genus Nymphaea. The primary aim of this study was to determine the kind of dormancy in seeds of six species of Nymphaea from the wet-dry tropics of Australia. Methods: The effects of temperature, light and germination stimulants on germination were tested on multiple collections of seeds of N. immutabilis, N. lukei, N. macrosperma, N. ondinea, N. pubescens and N. violacea. Embryo growth prior to hypocotyl emergence was monitored. Key Results: Germination was generally <10 % after 28 d in control treatments. Germination percentage was highest at 30 or 35 °C for seeds exposed to light and treated with ethylene or in anoxic conditions in sealed vials of water, and it differed significantly between collections of N. lukei, N. macrosperma and N. violacea. Seeds of N. pubescens did not germinate under any of the conditions. Embryo growth (8-37 % in length) occurred before hypocotyl emergence (germination) in seeds of the five species that germinated. Conclusions: Fresh seeds were dormant, and the amount of pregermination embryo growth in seeds of N. lukei and N. immutabilis was relatively small, while in seeds of N. macrosperma, N. ondinea and N. violacea it was relatively large. Thus, seeds of N. lukei and N. immutabilis had PD and those of N. macrosperma, N. ondinea and N. violacea had MPD. Overall, we found that seeds in the most phylogenetically derived clades within Nymphaea have MPD, suggesting that PD is the most likely basal trait within the Nymphaeales. This study also highlights the broad range of dormancy types and germination strategies in the ANA-grade angiosperms.


Asunto(s)
Nymphaea/anatomía & histología , Nymphaea/fisiología , Latencia en las Plantas , Australia , Latencia en las Plantas/fisiología , Semillas/anatomía & histología , Semillas/fisiología , Especificidad de la Especie
8.
J Exp Biol ; 221(Pt 7)2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29444841

RESUMEN

We explore a recent, innovative variation of closed-system respirometry for terrestrial organisms, whereby oxygen partial pressure (PO2 ) is repeatedly measured fluorometrically in a constant-volume chamber over multiple time points. We outline a protocol that aligns this technology with the broader literature on aerial respirometry, including the calculations required to accurately convert O2 depletion to metabolic rate (MR). We identify a series of assumptions, and sources of error associated with this technique, including thresholds where O2 depletion becomes limiting, that impart errors to the calculation and interpretation of MR. Using these adjusted calculations, we found that the resting MR of five species of angiosperm seeds ranged from 0.011 to 0.640 ml g-1 h-1, consistent with published seed MR values. This innovative methodology greatly expands the lower size limit of terrestrial organisms that can be measured, and offers the potential for measuring MR changes over time as a result of physiological processes of the organism.


Asunto(s)
Metabolismo Basal , Semillas/metabolismo , Espirometría/métodos , Acacia/metabolismo , Australia , Fluorescencia , Senna/metabolismo
9.
Ann Bot ; 122(6): 1061-1073, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30184161

RESUMEN

Background and Aims: While there is increasing recognition of Batesian floral mimicry in plants, there are few confirmed cases where mimicry involves more than one model species. Here, we test for pollination by mimicry in Diuris (Orchidaceae), a genus hypothesized to attract pollinators via mimicry of a range of co-occurring pea plants (Faboideae). Methods: Observations of pollinator behaviour were made for Diuris brumalis using arrays of orchid flowers. An analysis of floral traits in the co-flowering community and spectral reflectance measurements were undertaken to test if Di. brumalis and the pea plants showed strong similarity and were likely to be perceived as the same by bees. Pollen removal and fruit-set were recorded at 18 sites over two years to test if fitness of Di. brumalis increased with the abundance of the model species. Key Results: Diuris brumalis shares the pollinator species Trichococolletes capillosus and T. leucogenys (Hymenoptera: Colletidae) with co-flowering Faboideae from the genus Daviesia. On Di. brumalis, Trichocolletes exhibited the same stereotyped food-foraging and mate-patrolling behaviour that they exhibit on Daviesia. Diuris and pea plants showed strong morphological similarity compared to the co-flowering plant community, while the spectral reflectance of Diuris was similar to that of Daviesia spp. Fruit-set and pollen removal of Di. brumalis was highest at sites with a greater number of Daviesia flowers. Conclusions: Diuris brumalis is pollinated by mimicry of co-occurring congeneric Faboideae species. Evidence for mimicry of multiple models, all of which share pollinator species, suggests that this may represent a guild mimicry system. Interestingly, Di. brumalis belongs to a complex of species with similar floral traits, suggesting that this represents a useful system for investigating speciation in lineages that employ mimicry of food plants.


Asunto(s)
Abejas/fisiología , Mimetismo Biológico , Fabaceae/fisiología , Orchidaceae/fisiología , Polinización , Animales , Conducta Alimentaria , Conducta Sexual Animal , Australia Occidental
10.
Proc Biol Sci ; 284(1848)2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28179522

RESUMEN

Field metabolic rate (FMR) links the energy budget of an animal with the constraints of its ecosystem, but is particularly difficult to measure for small organisms. Landscape degradation exacerbates environmental adversity and reduces resource availability, imposing higher costs of living for many organisms. Here, we report a significant effect of landscape degradation on the FMR of free-flying Apis mellifera, estimated using 86Rb radio-isotopic turnover. We validated the relationship between 86Rb kb and metabolic rate for worker bees in the laboratory using flow-through respirometry. We then released radioisotopically enriched individuals into a natural woodland and a heavily degraded and deforested plantation. FMRs of worker bees in natural woodland vegetation were significantly higher than in a deforested landscape. Nectar consumption, estimated using 22Na radio-isotopic turnover, also differed significantly between natural and degraded landscapes. In the deforested landscape, we infer that the costs of foraging exceeded energetic availability, and honeybees instead foraged less and depended more on stored resources in the hive. If this is generally the case with increasing landscape degradation, this will have important implications for the provision of pollination services and the effectiveness and resilience of ecological restoration practice.


Asunto(s)
Abejas/metabolismo , Ecosistema , Néctar de las Plantas , Animales
11.
J Exp Biol ; 219(Pt 10): 1552-62, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26994173

RESUMEN

Seasonal acclimatisation of thermal tolerance, evaporative water loss and metabolic rate, along with regulation of the hive environment, are key ways whereby hive-based social insects mediate climatic challenges throughout the year, but the relative importance of these traits remains poorly understood. Here, we examined seasonal variation in metabolic rate and evaporative water loss of worker bees, and seasonal variation of hive temperature and relative humidity (RH), for the stingless bee Austroplebeia essingtoni (Apidae: Meliponini) in arid tropical Australia. Both water loss and metabolic rate were lower in the cooler, dry winter than in the hot, wet summer at most ambient temperatures between 20°C and 45°C. Contrary to expectation, thermal tolerance thresholds were higher in the winter than in the summer. Hives were cooler in the cooler, dry winter than in the hot, wet summer, linked to an apparent lack of hive thermoregulation. The RH of hives was regulated at approximately 65% in both seasons, which is higher than unoccupied control hives in the dry season, but less than unoccupied control hives in the wet season. Although adaptations to promote water balance appear more important for survival of A. essingtoni than traits related to temperature regulation, their capacity for water conservation is coincident with increased thermal tolerance. For these small, eusocial stingless bees in the arid tropics, where air temperatures are relatively high and stable compared with temperate areas, regulation of hive humidity appears to be of more importance than temperature for maintaining hive health.


Asunto(s)
Abejas/fisiología , Humedad , Comportamiento de Nidificación/fisiología , Temperatura , Animales , Metabolismo Basal/fisiología , Peso Corporal/fisiología , Clima , Modelos Biológicos , Estaciones del Año , Pérdida Insensible de Agua
12.
Ann Bot ; 117(2): 237-47, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26578720

RESUMEN

BACKGROUND AND AIMS: Organisms occupying the edges of natural geographical ranges usually survive at the extreme limits of their innate physiological tolerances. Extreme and prolonged fluctuations in environmental conditions, often associated with climate change and exacerbated at species' geographical range edges, are known to trigger alternative responses in reproduction. This study reports the first observations of adventitious inflorescence-derived plantlet formation in the marine angiosperm Posidonia australis, growing at the northern range edge (upper thermal and salinity tolerance) in Shark Bay, Western Australia. These novel plantlets are described and a combination of microsatellite DNA markers and flow cytometry is used to determine their origin. METHODS: Polymorphic microsatellite DNA markers were used to generate multilocus genotypes to determine the origin of the adventitious inflorescence-derived plantlets. Ploidy and genome size were estimated using flow cytometry. KEY RESULTS: All adventitious plantlets were genetically identical to the maternal plant and were therefore the product of a novel pseudoviviparous reproductive event. It was found that 87 % of the multilocus genotypes contained three alleles in at least one locus. Ploidy was identical in all sampled plants. The genome size (2 C value) for samples from Shark Bay and from a separate site much further south was not significantly different, implying they are the same ploidy level and ruling out a complete genome duplication (polyploidy). CONCLUSIONS: Survival at range edges often sees the development of novel responses in the struggle for survival and reproduction. This study documents a physiological response at the trailing edge, whereby reproductive strategy can adapt to fluctuating conditions and suggests that the lower-than-usual water temperature triggered unfertilized inflorescences to 'switch' to growing plantlets that were adventitious clones of their maternal parent. This may have important long-term implications as both genetic and ecological constraints may limit the ability to adapt or range-shift; this seagrass meadow in Shark Bay already has low genetic diversity, no sexual reproduction and no seedling recruitment.


Asunto(s)
Alismatales/fisiología , Mosaicismo , Reproducción/fisiología , Alismatales/genética , Alelos , Variación Genética , Inflorescencia/fisiología , Repeticiones de Microsatélite , Australia Occidental
13.
BMC Biol ; 13: 108, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26689715

RESUMEN

Karrikins are a family of compounds produced by wildfires that can stimulate the germination of dormant seeds of plants from numerous families. Seed plants could have 'discovered' karrikins during fire-prone times in the Cretaceous period when flowering plants were evolving rapidly. Recent research suggests that karrikins mimic an unidentified endogenous compound that has roles in seed germination and early plant development. The endogenous signalling compound is presumably not only similar to karrikins, but also to the related strigolactone hormones.


Asunto(s)
Incendios , Germinación , Lactonas/metabolismo , Piranos/metabolismo , Suelo/química
14.
Development ; 139(7): 1285-95, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22357928

RESUMEN

Karrikins are butenolides derived from burnt vegetation that stimulate seed germination and enhance seedling responses to light. Strigolactones are endogenous butenolide hormones that regulate shoot and root architecture, and stimulate the branching of arbuscular mycorrhizal fungi. Thus, karrikins and strigolactones are structurally similar but physiologically distinct plant growth regulators. In Arabidopsis thaliana, responses to both classes of butenolides require the F-box protein MAX2, but it remains unclear how discrete responses to karrikins and strigolactones are achieved. In rice, the DWARF14 protein is required for strigolactone-dependent inhibition of shoot branching. Here, we show that the Arabidopsis DWARF14 orthologue, AtD14, is also necessary for normal strigolactone responses in seedlings and adult plants. However, the AtD14 paralogue KARRIKIN INSENSITIVE 2 (KAI2) is specifically required for responses to karrikins, and not to strigolactones. Phylogenetic analysis indicates that KAI2 is ancestral and that AtD14 functional specialisation has evolved subsequently. Atd14 and kai2 mutants exhibit distinct subsets of max2 phenotypes, and expression patterns of AtD14 and KAI2 are consistent with the capacity to respond to either strigolactones or karrikins at different stages of plant development. We propose that AtD14 and KAI2 define a class of proteins that permit the separate regulation of karrikin and strigolactone signalling by MAX2. Our results support the existence of an endogenous, butenolide-based signalling mechanism that is distinct from the strigolactone pathway, providing a molecular basis for the adaptive response of plants to smoke.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Furanos/química , Regulación de la Expresión Génica de las Plantas , Hidrolasas/fisiología , Lactonas/química , Piranos/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Alelos , Proteínas de Arabidopsis/genética , Hidrolasas/genética , Luz , Modelos Biológicos , Mutación , Fenotipo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas , Transducción de Señal
15.
Plant Physiol ; 165(3): 1221-1232, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24808100

RESUMEN

Two α/ß-fold hydrolases, KARRIKIN INSENSITIVE2 (KAI2) and Arabidopsis thaliana DWARF14 (AtD14), are necessary for responses to karrikins (KARs) and strigolactones (SLs) in Arabidopsis (Arabidopsis thaliana). Although KAI2 mediates responses to KARs and some SL analogs, AtD14 mediates SL but not KAR responses. To further determine the specificity of these proteins, we assessed the ability of naturally occurring deoxystrigolactones to inhibit Arabidopsis hypocotyl elongation, regulate seedling gene expression, suppress outgrowth of secondary inflorescences, and promote seed germination. Neither 5-deoxystrigol nor 4-deoxyorobanchol was active in KAI2-dependent seed germination or hypocotyl elongation, but both were active in AtD14-dependent hypocotyl elongation and secondary shoot growth. However, the nonnatural enantiomer of 5-deoxystrigol was active through KAI2 in growth and gene expression assays. We found that the four stereoisomers of the SL analog GR24 had similar activities to their deoxystrigolactone counterparts. The results suggest that AtD14 and KAI2 exhibit selectivity to the butenolide D ring in the 2'R and 2'S configurations, respectively. However, we found, for nitrile-debranone (CN-debranone, a simple SL analog), that the 2'R configuration is inactive but that the 2'S configuration is active through both AtD14 and KAI2. Our results support the conclusion that KAI2-dependent signaling does not respond to canonical SLs. Furthermore, racemic mixtures of chemically synthesized SLs and their analogs, such as GR24, should be used with caution because they can activate responses that are not specific to naturally occurring SLs. In contrast, the use of specific stereoisomers might provide valuable information about the specific perception systems operating in different plant tissues, parasitic weed seeds, and arbuscular mycorrhizae.

16.
Plant Cell Environ ; 38(1): 50-60, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24811370

RESUMEN

Nitrogen (N) transfer among plants has been found where at least one plant can fix N2 . In nutrient-poor soils, where plants with contrasting nutrient-acquisition strategies (without N2 fixation) co-occur, it is unclear if N transfer exists and what promotes it. A novel multi-species microcosm pot experiment was conducted to quantify N transfer between arbuscular mycorrhizal (AM), ectomycorrhizal (EM), dual AM/EM, and non-mycorrhizal cluster-rooted plants in nutrient-poor soils with mycorrhizal mesh barriers. We foliar-fed plants with a K(15) NO3 solution to quantify one-way N transfer from 'donor' to 'receiver' plants. We also quantified mycorrhizal colonization and root intermingling. Transfer of N between plants with contrasting nutrient-acquisition strategies occurred at both low and high soil nutrient levels with or without root intermingling. The magnitude of N transfer was relatively high (representing 4% of donor plant N) given the lack of N2 fixation. Receiver plants forming ectomycorrhizas or cluster roots were more enriched compared with AM-only plants. We demonstrate N transfer between plants of contrasting nutrient-acquisition strategies, and a preferential enrichment of cluster-rooted and EM plants compared with AM plants. Nutrient exchanges among plants are potentially important in promoting plant coexistence in nutrient-poor soils.


Asunto(s)
Micorrizas/fisiología , Nitrógeno/metabolismo , Plantas/metabolismo , Transporte Biológico , Biomasa , Fijación del Nitrógeno , Isótopos de Nitrógeno , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Brotes de la Planta/metabolismo , Brotes de la Planta/microbiología , Plantas/microbiología , Suelo
17.
Ann Bot ; 116(3): 391-402, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26271118

RESUMEN

BACKGROUND: Seedling recruitment is essential to the sustainability of any plant population. Due to the minute nature of seeds and early-stage seedlings, orchid germination in situ was for a long time practically impossible to observe, creating an obstacle towards understanding seedling site requirements and fluctuations in orchid populations. The introduction of seed packet techniques for sowing and retrieval in natural sites has brought with it important insights, but many aspects of orchid seed and germination biology remain largely unexplored. KEY CONSIDERATIONS: The germination niche for orchids is extremely complex, because it is defined by requirements not only for seed lodging and germination, but also for presence of a fungal host and its substrate. A mycobiont that the seedling can parasitize is considered an essential element, and a great diversity of Basidiomycota and Ascomycota have now been identified for their role in orchid seed germination, with fungi identifiable as imperfect Rhizoctonia species predominating. Specificity patterns vary from orchid species employing a single fungal lineage to species associating individually with a limited selection of distantly related fungi. A suitable organic carbon source for the mycobiont constitutes another key requirement. Orchid germination also relies on factors that generally influence the success of plant seeds, both abiotic, such as light/shade, moisture, substrate chemistry and texture, and biotic, such as competitors and antagonists. Complexity is furthermore increased when these factors influence seeds/seedling, fungi and fungal substrate differentially. CONCLUSIONS: A better understanding of germination and seedling establishment is needed for conservation of orchid populations. Due to the obligate association with a mycobiont, the germination niches in orchid species are extremely complex and varied. Microsites suitable for germination can be small and transient, and direct observation is difficult. An experimental approach using several levels of environmental manipulation/control is recommended.


Asunto(s)
Conservación de los Recursos Naturales , Germinación , Orchidaceae/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Orchidaceae/microbiología , Plantones/microbiología
18.
Ann Bot ; 116(3): 377-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26311710

RESUMEN

Orchidaceae, one of the largest families of flowering plants, present particular challenges for conservation, due in great part to their often complex interactions with mycorrhizal fungi, pollinators and host trees. In this Highlight, we present seven papers focusing on orchids and their interactions and other factors relating to their conservation.


Asunto(s)
Conservación de los Recursos Naturales , Orchidaceae/fisiología
19.
Ann Bot ; 116(3): 413-21, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26105186

RESUMEN

BACKGROUND AND AIMS: Although mycorrhizal associations are predominantly generalist, specialized mycorrhizal interactions have repeatedly evolved in Orchidaceae, suggesting a potential role in limiting the geographical range of orchid species. In particular, the Australian orchid flora is characterized by high mycorrhizal specialization and short-range endemism. This study investigates the mycorrhizae used by Pheladenia deformis, one of the few orchid species to occur across the Australian continent. Specifically, it examines whether P. deformis is widely distributed through using multiple fungi or a single widespread fungus, and if the fungi used by Australian orchids are widespread at the continental scale. METHODS: Mycorrhizal fungi were isolated from P. deformis populations in eastern and western Australia. Germination trials using seed from western Australian populations were conducted to test if these fungi supported germination, regardless of the region in which they occurred. A phylogenetic analysis was undertaken using isolates from P. deformis and other Australian orchids that use the genus Sebacina to test for the occurrence of operational taxonomic units (OTUs) in eastern and western Australia. KEY RESULTS: With the exception of one isolate, all fungi used by P. deformis belonged to a single fungal OTU of Sebacina. Fungal isolates from eastern and western Australia supported germination of P. deformis. A phylogenetic analysis of Australian Sebacina revealed that all of the OTUs that had been well sampled occurred on both sides of the continent. CONCLUSIONS: The use of a widespread fungal OTU in P. deformis enables a broad distribution despite high mycorrhizal specificity. The Sebacina OTUs that are used by a range of Australian orchids occur on both sides of the continent, demonstrating that the short-range endemism prevalent in the orchids is not driven by fungal species with narrow distributions. Alternatively, a combination of specific edaphic requirements and a high incidence of pollination by sexual deception may explain biogeographic patterns in southern Australian orchids.


Asunto(s)
Micorrizas/fisiología , Orchidaceae/microbiología , Orchidaceae/fisiología , Dispersión de las Plantas , Proteínas Fúngicas/genética , Germinación , Micorrizas/genética , Orchidaceae/crecimiento & desarrollo , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
20.
Ann Bot ; 115(5): 847-59, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25660345

RESUMEN

BACKGROUND AND AIMS: Rock pools are small, geologically stable freshwater ecosystems that are both hydrologically and biologically isolated. They harbour high levels of plant endemism and experience environmental unpredictability driven by the presence of water over variable temporal scales. This study examined the hypothesis that the sediment seed bank in monsoon tropical freshwater rock pools would persist through one or more periods of desiccation, with seed dormancy regulating germination timing in response to rock pool inundation and drying events. METHODS: Seeds were collected from seven dominant rock pool species, and germination biology and seed dormancy were assessed under laboratory conditions in response to light, temperature and germination stimulators (gibberellic acid, karrikinolide and ethylene). Field surveys of seedling emergence from freshwater rock pools in the Kimberley region of Western Australia were undertaken, and sediment samples were collected from 41 vegetated rock pools. Seedling emergence and seed bank persistence in response to multiple wetting and drying cycles were determined. KEY RESULTS: The sediment seed bank of individual rock pools was large (13 824 ± 307 to 218 320 ± 42 412 seeds m(-2) for the five species investigated) and spatially variable. Seedling density for these same species in the field ranged from 13 696 to 87 232 seedlings m(-2). Seeds of rock pool taxa were physiologically dormant, with germination promoted by after-ripening and exposure to ethylene or karrikinolide. Patterns of seedling emergence varied between species and were finely tuned to seasonal temperature and moisture conditions, with the proportions of emergent seedlings differing between species through multiple inundation events. A viable seed bank persisted after ten consecutive laboratory inundation events, and seeds retained viability in dry sediments for at least 3 years. CONCLUSIONS: The persistent seed bank in freshwater rock pools is likely to provide resilience to plant communities against environmental stochasticity. Since rock pool communities are often comprised of highly specialized endemic and range-restricted species, sediment seed banks may represent significant drivers of species persistence and diversification in these ecosystems.


Asunto(s)
Magnoliopsida/fisiología , Latencia en las Plantas , Semillas/fisiología , Ecosistema , Ambiente , Etilenos/farmacología , Agua Dulce , Furanos/farmacología , Sedimentos Geológicos , Germinación/efectos de los fármacos , Giberelinas/farmacología , Luz , Magnoliopsida/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Piranos/farmacología , Estaciones del Año , Plantones/efectos de los fármacos , Plantones/fisiología , Semillas/efectos de los fármacos , Temperatura , Clima Tropical , Australia Occidental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA