Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Bacteriol ; 201(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31010903

RESUMEN

Type III secretion systems (T3SS) are widely distributed in Gram-negative microorganisms and critical for host-pathogen and host-symbiont interactions with plants and animals. Central features of the T3SS are a highly conserved set of secretion and translocation genes and contact dependence wherein host-pathogen interactions trigger effector protein delivery and serve as an inducing signal for T3SS gene expression. In addition to these conserved features, there are pathogen-specific properties that include a unique repertoire of effector genes and mechanisms to control T3SS gene expression. The Pseudomonas aeruginosa T3SS serves as a model system to understand transcriptional and posttranscriptional mechanisms involved in the control of T3SS gene expression. The central regulatory feature is a partner-switching system that controls the DNA-binding activity of ExsA, the primary regulator of T3SS gene expression. Superimposed upon the partner-switching mechanism are cyclic AMP and cyclic di-GMP signaling systems, two-component systems, global regulators, and RNA-binding proteins that have positive and negative effects on ExsA transcription and/or synthesis. In the present review, we discuss advances in our understanding of how these regulatory systems orchestrate the activation of T3SS gene expression in the context of acute infections and repression of the T3SS as P. aeruginosa adapts to and colonizes the cystic fibrosis airways.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Transactivadores/genética , Sistemas de Secreción Tipo III/genética , Animales , Humanos , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/patogenicidad , Sistemas de Mensajero Secundario , Transducción de Señal , Transcripción Genética
2.
J Bacteriol ; 200(10)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29507088

RESUMEN

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that requires iron for growth and virulence. Under low-iron conditions, P. aeruginosa transcribes two highly identical (95%) small regulatory RNAs (sRNAs), PrrF1 and PrrF2, which are required for virulence in acute murine lung infection models. The PrrF sRNAs promote the production of 2-akyl-4(1H)-quinolone metabolites (AQs) that mediate a range of biological activities, including quorum sensing and polymicrobial interactions. Here, we show that the PrrF1 and PrrF2 sRNAs promote AQ production by redundantly inhibiting translation of antR, which encodes a transcriptional activator of the anthranilate degradation genes. A combination of genetic and biophysical analyses was used to define the sequence requirements for PrrF regulation of antR, demonstrating that the PrrF sRNAs interact with the antR 5' untranslated region (UTR) at sequences overlapping the translational start site of this mRNA. The P. aeruginosa Hfq protein interacted with UA-rich sequences in both PrrF sRNAs (Kd [dissociation constant] = 50 nM and 70 nM). Hfq bound with lower affinity to the antR mRNA (0.3 µM), and PrrF was able to bind to antR mRNA in the absence of Hfq. Nevertheless, Hfq increased the rate of PrrF annealing to the antR UTR by 10-fold. These studies provide a mechanistic description of how the PrrF1 and PrrF2 sRNAs mediate virulence traits, such as AQ production, in P. aeruginosaIMPORTANCE The iron-responsive PrrF sRNAs play a central role in regulating P. aeruginosa iron homeostasis and pathogenesis, yet the molecular mechanisms by which PrrF regulates gene expression are largely unknown. In this study, we used genetic and biophysical analyses to define the interactions of the PrrF sRNAs with Hfq, an RNA annealer, and the antR mRNA, which has downstream effects on quorum sensing and virulence factor production. These studies provide a comprehensive mechanistic analysis of how the PrrF sRNAs regulate virulence trait production through a key mRNA target in P. aeruginosa.


Asunto(s)
4-Quinolonas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , ARN Mensajero/genética , ARN Pequeño no Traducido/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Hierro/metabolismo , Pseudomonas aeruginosa/metabolismo , ARN Bacteriano/genética , Virulencia/genética
3.
Infect Immun ; 83(3): 863-75, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25510881

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that requires iron to cause infection, but it also must regulate the uptake of iron to avoid iron toxicity. The iron-responsive PrrF1 and PrrF2 small regulatory RNAs (sRNAs) are part of P. aeruginosa's iron regulatory network and affect the expression of at least 50 genes encoding iron-containing proteins. The genes encoding the PrrF1 and PrrF2 sRNAs are encoded in tandem in P. aeruginosa, allowing for the expression of a distinct, heme-responsive sRNA named PrrH that appears to regulate genes involved in heme metabolism. Using a combination of growth, mass spectrometry, and gene expression analysis, we showed that the ΔprrF1,2 mutant, which lacks expression of the PrrF and PrrH sRNAs, is defective for both iron and heme homeostasis. We also identified phuS, encoding a heme binding protein involved in heme acquisition, and vreR, encoding a previously identified regulator of P. aeruginosa virulence genes, as novel targets of prrF-mediated heme regulation. Finally, we showed that the prrF locus encoding the PrrF and PrrH sRNAs is required for P. aeruginosa virulence in a murine model of acute lung infection. Moreover, we showed that inoculation with a ΔprrF1,2 deletion mutant protects against future challenge with wild-type P. aeruginosa. Combined, these data demonstrate that the prrF-encoded sRNAs are critical regulators of P. aeruginosa virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/genética , ARN no Traducido/metabolismo , Enfermedad Aguda , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hemo/metabolismo , Proteínas de Unión al Hemo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Homeostasis , Humanos , Inmunización , Pulmón/microbiología , Pulmón/patología , Ratones , Datos de Secuencia Molecular , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , ARN no Traducido/administración & dosificación , ARN no Traducido/genética , ARN no Traducido/inmunología , Eliminación de Secuencia , Virulencia
4.
Front Cell Infect Microbiol ; 11: 604511, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322396

RESUMEN

Bacterial small RNAs (sRNAs) are critical post-transcriptional regulators that exert broad effects on cell physiology. One class of sRNAs, referred to as trans-acting sRNAs, base-pairs with mRNAs to cause changes in their stability or translation. Another class of sRNAs sequesters RNA-binding proteins that in turn modulate mRNA expression. RNA chaperones play key roles in these regulatory events by promoting base-pairing of sRNAs to mRNAs, increasing the stability of sRNAs, inducing conformational changes on mRNA targets upon binding, or by titrating sRNAs away from their primary targets. In pathogenic bacteria, sRNAs and their chaperones exert broad impacts on both cell physiology and virulence, highlighting the central role of these systems in pathogenesis. This review provides an overview of the growing number and roles of these chaperone proteins in sRNA regulation, highlighting how these proteins contribute to bacterial pathogenesis.


Asunto(s)
ARN Pequeño no Traducido , Bacterias/genética , Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Virulencia
5.
mBio ; 11(3)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546612

RESUMEN

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen causing skin and soft tissue, respiratory, and bloodstream infections. The type III secretion system (T3SS) is one important virulence factor. Production of the T3SS is controlled by ExsA, a transcription factor that activates expression of the entire T3SS regulon. Global regulators including Vfr, RsmA, and Hfq also contribute to regulation of the T3SS. Vfr is a cAMP-responsive transcription factor that activates exsA transcription. RsmA, an RNA-binding protein, inversely controls expression of the T3SS and the type VI secretion system (T6SS). Hfq is an RNA chaperone that functions by stabilizing small noncoding RNAs (sRNAs) and/or facilitating base pairing between sRNAs and mRNA targets. A previous study identified sRNA 1061, which directly targets the exsA mRNA and likely inhibits ExsA synthesis. In this study, we screened an sRNA expression library and identified sRNA 179 as an Hfq-dependent inhibitor of T3SS gene expression. Further characterization revealed that sRNA 179 inhibits the synthesis of both ExsA and Vfr. The previous finding that RsmA stimulates ExsA and Vfr synthesis suggested that sRNA 179 impacts the Gac/Rsm system. Consistent with that idea, the inhibitory activity of sRNA 179 is suppressed in a mutant lacking rsmY and rsmZ, and sRNA 179 expression stimulates rsmY transcription. RsmY and RsmZ are small noncoding RNAs that sequester RsmA from target mRNAs. Our combined findings show that Hfq and sRNA 179 indirectly regulate ExsA and Vfr synthesis by reducing the available pool of RsmA, leading to reduced expression of the T3SS and cAMP-Vfr regulons.IMPORTANCE Control of gene expression by small noncoding RNA (sRNA) is well documented but underappreciated. Deep sequencing of mRNA preparations from Pseudomonas aeruginosa suggests that >500 sRNAs are generated. Few of those sRNAs have defined roles in gene expression. To address that knowledge gap, we constructed an sRNA expression library and identified sRNA 179 as a regulator of the type III secretion system (T3SS) and the cAMP-Vfr regulons. The T3SS- and cAMP-Vfr-controlled genes are critical virulence factors. Increased understanding of the signals and regulatory mechanisms that control these important factors will enhance our understanding of disease progression and reveal potential approaches for therapeutic intervention.


Asunto(s)
Proteínas Bacterianas/genética , Proteína Receptora de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteína de Factor 1 del Huésped/genética , Pseudomonas aeruginosa/genética , ARN Pequeño no Traducido/genética , Sistemas de Secreción Tipo III/genética , Regulación Bacteriana de la Expresión Génica , Biblioteca de Genes , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/patogenicidad , ARN Bacteriano/genética , Regulón , Transcripción Genética , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/genética
6.
Methods Mol Biol ; 1737: 341-350, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29484602

RESUMEN

Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cromatografía de Afinidad/métodos , Pseudomonas aeruginosa/metabolismo , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Reactivos de Enlaces Cruzados/metabolismo , Unión Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/aislamiento & purificación , Rayos Ultravioleta
7.
Microbiologyopen ; 3(6): 950-60, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25351924

RESUMEN

Small bacterial regulatory RNAs (sRNAs) have gained immense appreciation over the last decade for their roles in mediating posttranscriptional gene regulation of numerous physiological processes. Several proteins contribute to sRNA stability and regulation, most notably the Hfq RNA-binding protein. However, not all sRNAs rely on Hfq for their stability. It is therefore likely that other proteins contribute to the stability and function of certain bacterial sRNAs. Here, we describe a methodology for identifying in vivo-binding proteins of sRNAs, developed using the iron-responsive PrrF and PrrH sRNAs of Pseudomonas aeruginosa. RNA was isolated from iron-depleted cultures, which were irradiated to cross-link nucleoprotein complexes. Subsequently, PrrF- and PrrH-protein complexes were enriched using cDNA "bait", and enriched RNA-protein complexes were analyzed by tandem mass spectrometry to identify PrrF and PrrH associated proteins. This method identified Hfq as a potential PrrF- and PrrH-binding protein. Interestingly, Hfq was identified more often in samples probed with the PrrF cDNA "bait" as compared to the PrrH cDNA "bait", suggesting Hfq has a stronger binding affinity for the PrrF sRNAs in vivo. Hfq binding to the PrrF and PrrH sRNAs was validated by electrophoretic mobility shift assays with purified Hfq protein from P. aeruginosa. As such, this study demonstrates that in vivo cross-linking coupled with sequence-specific affinity chromatography and tandem mass spectrometry (SSAC-MS/MS) is an effective methodology for unbiased identification of bacterial sRNA-binding proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cromatografía de Afinidad/métodos , Espectrometría de Masas/métodos , Pseudomonas aeruginosa/metabolismo , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Proteínas Bacterianas/genética , Unión Proteica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética
8.
Pathog Dis ; 70(3): 307-20, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24436170

RESUMEN

Pseudomonas aeruginosa is a Gram-negative opportunistic bacterial pathogen that is refractory to a variety of current antimicrobial therapeutic regimens. Complicating treatment for such infections is the ability of P. aeruginosa to form biofilms, as well as several innate and acquired resistance mechanisms. Previous studies suggest iron plays a role in resistance to antimicrobial therapy, including the efficacy of an FDA-approved iron chelator, deferasirox (DSX), or Gallium, an iron analog, in potentiating antibiotic-dependent killing of P. aeruginosa biofilms. Here, we show that iron-replete conditions enhance resistance of P. aeruginosa nonbiofilm growth against tobramycin and tigecycline. Interestingly, the mechanism of iron-enhanced resistance to each of these antibiotics is distinct. Whereas pyoverdine-mediated iron uptake is important for optimal resistance to tigecycline, it does not enhance tobramycin resistance. In contrast, heme supplementation results in increased tobramycin resistance, while having no significant effect on tigecycline resistance. Thus, nonsiderophore bound iron plays an important role in resistance to tobramycin, while pyoverdine increases the ability of P. aeruginosa to resist tigecycline treatment. Lastly, we show that iron increases the minimal concentration of tobramycin, but not tigecycline, required to eradicate P. aeruginosa biofilms. Moreover, iron depletion blocks the previous observed induction of biofilm formation by subinhibitory concentrations of tobramycin, suggesting iron and tobramycin signal through overlapping regulatory pathways to affect biofilm formation. These data further support the role of iron in P. aeruginosa antibiotic resistance, providing yet another compelling case for targeting iron acquisition for future antimicrobial drug development.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana , Hierro/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Anaerobiosis , Proteínas de Transporte de Catión/metabolismo , Hemo/metabolismo , Quelantes del Hierro/farmacología , Minociclina/análogos & derivados , Minociclina/farmacología , Infecciones por Pseudomonas/microbiología , Sideróforos/metabolismo , Tigeciclina , Tobramicina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA