Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Med Genet ; 60(11): 1084-1091, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37666660

RESUMEN

BACKGROUND: Syngnathia is an ultrarare craniofacial malformation characterised by an inability to open the mouth due to congenital fusion of the upper and lower jaws. The genetic causes of isolated bony syngnathia are unknown. METHODS: We used whole exome and Sanger sequencing and microsatellite analysis in six patients (from four families) presenting with syngnathia. We used CRISPR/Cas9 genome editing to generate vgll2a and vgll4l germline mutant zebrafish, and performed craniofacial cartilage analysis in homozygous mutants. RESULTS: We identified homozygous truncating variants in vestigial-like family member 2 (VGLL2) in all six patients. Two alleles were identified: one in families of Turkish origin and the other in families of Moroccan origin, suggesting a founder effect for each. A shared haplotype was confirmed for the Turkish patients. The VGLL family of genes encode cofactors of TEAD transcriptional regulators. Vgll2 is regionally expressed in the pharyngeal arches of model vertebrate embryos, and morpholino-based knockdown of vgll2a in zebrafish has been reported to cause defects in development of pharyngeal arch cartilages. However, we did not observe craniofacial anomalies in vgll2a or vgll4l homozygous mutant zebrafish nor in fish with double knockout of vgll2a and vgll4l. In Vgll2 -/- mice, which are known to present a skeletal muscle phenotype, we did not identify defects of the craniofacial skeleton. CONCLUSION: Our results suggest that although loss of VGLL2 leads to a striking jaw phenotype in humans, other vertebrates may have the capacity to compensate for its absence during craniofacial development.

2.
PLoS One ; 18(12): e0294922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38039285

RESUMEN

The matrix metalloproteinase MMP9 influences cellular morphology and function, and plays important roles in organogenesis and disease. It exerts both protective and deleterious effects in renal pathology, depending upon its specific substrates. To explore new functions for MMP9 in kidney cysts formation and disease progression, we generated a mouse model by breeding juvenile cystic kidney (jck) mice with MMP9 deficient mice. Specifically, we provide evidence that MMP9 is overexpressed in cystic tissue where its enzymatic activity is increased 7-fold. MMP9 deficiency in cystic kidney worsen cystic kidney diseases by decreasing renal function, favoring cyst expansion and fibrosis. In addition, we find that periostin is a new critical substrate for MMP9 and in its absence periostin accumulates in cystic lining cells. As periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney diseases, we propose that the control of periostin by MMP9 and its associated intracellular signaling pathways including integrins, integrin-linked kinase and focal adhesion kinase confers to MMP9 a protective effect on the severity of the disease.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Enfermedades Renales Poliquísticas , Animales , Ratones , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Enfermedades Renales Poliquísticas/patología , Riñón/patología , Transducción de Señal , Fibrosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA