Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Asian-Australas J Anim Sci ; 30(9): 1245-1252, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28231693

RESUMEN

OBJECTIVE: Phellodendron amurense (P. amurense) and Humulus japonicus (H. japonicus) are closely involved in anti-oxidative response and increasing antioxidant enzymes activities. However, the effects of their extracts on development of preimplantation bovine embryos have not been investigated. Therefore, we investigated the effects of P. amurense and H. japonicus extracts on developmental competence and quality of preimplantation bovine embryos. METHODS: After in vitro fertilization, bovine embryos were cultured for 7 days in Charles Rosenkrans amino acid medium supplemented with P. amurense (0.01 µg/mL) and H. japonicus (0.01 µg/mL). The effect of this supplementation during in vitro culture on development competence and antioxidant was investigated. RESULTS: We observed that the blastocysts rate was significantly increased (p<0.05) in P. amurense (28.9%±2.9%), H. japonicus (30.9%±1.5%), and a mixture of P. amurense and H. japonicus (34.8%± 2.1%) treated groups compared with the control group (25.4%±1.6%). We next confirmed that the intracellular levels of reactive oxygen species (ROS) were significantly decreased (p<0.01) in P. amurense and/or H. japonicus extract treated groups when compared with the control group. Our results also showed that expression of cleaved caspase-3 and apoptotic cells of blastocysts were significantly decreased (p<0.05) in bovine blastocysts derived from both P. amurense and H. japonicus extract treated embryos. CONCLUSION: These results suggest that proper treatment with P. amurense and H. japonicus extracts in the development of preimplantation bovine embryos improves the quality of blastocysts, which may be related to the reduction of ROS level and apoptosis.

2.
J Reprod Dev ; 62(3): 249-55, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26860251

RESUMEN

Gangliosides are key lipid molecules required for the regulation of cellular processes such as proliferation, differentiation, and cell signaling, including signaling of epidermal growth factor receptor (EGFR). Epidermal growth factor (EGF) has long been considered a potential regulator of meiotic and cytoplasmic maturation in mammalian oocytes. However, there is no report on the direct effect of ganglioside GD1a in porcine oocyte maturation. In this study, we first investigated a functional link between GD1a and meiotic maturation during in vitro maturation (IVM) of porcine embryos. Moreover, we confirmed the effect of exogenous GD1a treatment on blastocyst development, quality, and fertilization rate in early embryonic development. First, we observed that the protein level of ST3GAL2, a GD1a synthesizing enzyme, significantly increased (P < 0.01) in cumulus-oocyte-complexes (COCs) during IVM progress. The proportion of arrested germinal vesicles (GV) increased in oocytes treated with EGF+GD1a (41.6 ± 1.5%) at the IVM I stage. Upon completion of meiotic maturation, the proportion of metaphase II (M II) was significantly higher (P < 0.05) in the EGF+GD1a (89.9 ± 3.6%) treated group. After IVF, the percentage of penetrated oocytes was significantly higher (P < 0.05) in the EGF+GD1a (89.1 ± 2.3%) treated group than in the control group. Furthermore, exogenous GD1a treatment improved the developmental competence and quality of blastocysts during preimplantation embryo development stage. These results suggest that ganglioside GD1a may play an important role in IVM mechanisms of porcine maturation capacity. Furthermore, our findings will be helpful for better promoting the embryo development and blastocyst quality in pigs.


Asunto(s)
Blastocisto/citología , Gangliósido G(M1)/análogos & derivados , Oocitos/citología , Animales , Apoptosis , Núcleo Celular/metabolismo , Células Cultivadas , Fase de Segmentación del Huevo , Células del Cúmulo/citología , Desarrollo Embrionario , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Femenino , Fertilización , Gangliósido G(M1)/fisiología , Meiosis , Metafase , Ovario/metabolismo , Sialiltransferasas/metabolismo , Porcinos , beta-Galactosida alfa-2,3-Sialiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA