Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Immunity ; 56(11): 2555-2569.e5, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37967531

RESUMEN

Tumors develop by invoking a supportive environment characterized by aberrant angiogenesis and infiltration of tumor-associated macrophages (TAMs). In a transgenic model of breast cancer, we found that TAMs localized to the tumor parenchyma and were smaller than mammary tissue macrophages. TAMs had low activity of the metabolic regulator mammalian/mechanistic target of rapamycin complex 1 (mTORC1), and depletion of negative regulator of mTORC1 signaling, tuberous sclerosis complex 1 (TSC1), in TAMs inhibited tumor growth in a manner independent of adaptive lymphocytes. Whereas wild-type TAMs exhibited inflammatory and angiogenic gene expression profiles, TSC1-deficient TAMs had a pro-resolving phenotype. TSC1-deficient TAMs relocated to a perivascular niche, depleted protein C receptor (PROCR)-expressing endovascular endothelial progenitor cells, and rectified the hyperpermeable blood vasculature, causing tumor tissue hypoxia and cancer cell death. TSC1-deficient TAMs were metabolically active and effectively eliminated PROCR-expressing endothelial cells in cell competition experiments. Thus, TAMs exhibit a TSC1-dependent mTORC1-low state, and increasing mTORC1 signaling promotes a pro-resolving state that suppresses tumor growth, defining an innate immune tumor suppression pathway that may be exploited for cancer immunotherapy.


Asunto(s)
Células Progenitoras Endoteliales , Proteínas Supresoras de Tumor , Animales , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Macrófagos Asociados a Tumores/metabolismo , Células Progenitoras Endoteliales/metabolismo , Receptor de Proteína C Endotelial , Diana Mecanicista del Complejo 1 de la Rapamicina , Neovascularización Patológica , Mamíferos
2.
Immunity ; 54(5): 976-987.e7, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979589

RESUMEN

Aerobic glycolysis-the Warburg effect-converts glucose to lactate via the enzyme lactate dehydrogenase A (LDHA) and is a metabolic feature of effector T cells. Cells generate ATP through various mechanisms and Warburg metabolism is comparatively an energy-inefficient glucose catabolism pathway. Here, we examined the effect of ATP generated via aerobic glycolysis in antigen-driven T cell responses. Cd4CreLdhafl/fl mice were resistant to Th17-cell-mediated experimental autoimmune encephalomyelitis and exhibited defective T cell activation, migration, proliferation, and differentiation. LDHA deficiency crippled cellular redox balance and inhibited ATP production, diminishing PI3K-dependent activation of Akt kinase and thereby phosphorylation-mediated inhibition of Foxo1, a transcriptional repressor of T cell activation programs. Th17-cell-specific expression of an Akt-insensitive Foxo1 recapitulated the defects seen in Cd4CreLdhafl/fl mice. Induction of LDHA required PI3K signaling and LDHA deficiency impaired PI3K-catalyzed PIP3 generation. Thus, Warburg metabolism augments glycolytic ATP production, fueling a PI3K-centered positive feedback regulatory circuit that drives effector T cell responses.


Asunto(s)
Adenosina Trifosfato/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Transducción de Señal/fisiología , Células Th17/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Proliferación Celular/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Glucólisis/fisiología , L-Lactato Deshidrogenasa/deficiencia , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
3.
Nature ; 619(7970): 616-623, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380769

RESUMEN

In metazoan organisms, cell competition acts as a quality control mechanism to eliminate unfit cells in favour of their more robust neighbours1,2. This mechanism has the potential to be maladapted, promoting the selection of aggressive cancer cells3-6. Tumours are metabolically active and are populated by stroma cells7,8, but how environmental factors affect cancer cell competition remains largely unknown. Here we show that tumour-associated macrophages (TAMs) can be dietarily or genetically reprogrammed to outcompete MYC-overexpressing cancer cells. In a mouse model of breast cancer, MYC overexpression resulted in an mTORC1-dependent 'winner' cancer cell state. A low-protein diet inhibited mTORC1 signalling in cancer cells and reduced tumour growth, owing unexpectedly to activation of the transcription factors TFEB and TFE3 and mTORC1 in TAMs. Diet-derived cytosolic amino acids are sensed by Rag GTPases through the GTPase-activating proteins GATOR1 and FLCN to control Rag GTPase effectors including TFEB and TFE39-14. Depletion of GATOR1 in TAMs suppressed the activation of TFEB, TFE3 and mTORC1 under the low-protein diet condition, causing accelerated tumour growth; conversely, depletion of FLCN or Rag GTPases in TAMs activated TFEB, TFE3 and mTORC1 under the normal protein diet condition, causing decelerated tumour growth. Furthermore, mTORC1 hyperactivation in TAMs and cancer cells and their competitive fitness were dependent on the endolysosomal engulfment regulator PIKfyve. Thus, noncanonical engulfment-mediated Rag GTPase-independent mTORC1 signalling in TAMs controls competition between TAMs and cancer cells, which defines a novel innate immune tumour suppression pathway that could be targeted for cancer therapy.


Asunto(s)
Competencia Celular , Técnicas de Reprogramación Celular , Inmunidad Innata , Neoplasias , Macrófagos Asociados a Tumores , Animales , Ratones , Aminoácidos/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Competencia Celular/genética , Competencia Celular/inmunología , Proteínas en la Dieta/farmacología , Modelos Animales de Enfermedad , GTP Fosfohidrolasas/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
4.
Nature ; 605(7908): 139-145, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35444279

RESUMEN

Cellular transformation induces phenotypically diverse populations of tumour-infiltrating T cells1-5, and immune checkpoint blockade therapies preferentially target T cells that recognize cancer cell neoantigens6,7. Yet, how other classes of tumour-infiltrating T cells contribute to cancer immunosurveillance remains elusive. Here, in a survey of T cells in mouse and human malignancies, we identified a population of αß T cell receptor (TCR)-positive FCER1G-expressing innate-like T cells with high cytotoxic potential8 (ILTCKs). These cells were broadly reactive to unmutated self-antigens, arose from distinct thymic progenitors following early encounter with cognate antigens, and were continuously replenished by thymic progenitors during tumour progression. Notably, expansion and effector differentiation of intratumoural ILTCKs depended on interleukin-15 (IL-15) expression in cancer cells, and inducible activation of IL-15 signalling in adoptively transferred ILTCK progenitors suppressed tumour growth. Thus, the antigen receptor self-reactivity, unique ontogeny, and distinct cancer cell-sensing mechanism distinguish ILTCKs from conventional cytotoxic T cells, and define a new class of tumour-elicited immune response.


Asunto(s)
Inmunidad Innata , Interleucina-15 , Neoplasias , Animales , Diferenciación Celular , Ratones , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Citotóxicos/metabolismo
5.
Nature ; 587(7832): 121-125, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087933

RESUMEN

Cancer arises from malignant cells that exist in dynamic multilevel interactions with the host tissue. Cancer therapies aiming to directly kill cancer cells, including oncogene-targeted therapy and immune-checkpoint therapy that revives tumour-reactive cytotoxic T lymphocytes, are effective in some patients1,2, but acquired resistance frequently develops3,4. An alternative therapeutic strategy aims to rectify the host tissue pathology, including abnormalities in the vasculature that foster cancer progression5,6; however, neutralization of proangiogenic factors such as vascular endothelial growth factor A (VEGFA) has had limited clinical benefits7,8. Here, following the finding that transforming growth factor-ß (TGF-ß) suppresses T helper 2 (TH2)-cell-mediated cancer immunity9, we show that blocking TGF-ß signalling in CD4+ T cells remodels the tumour microenvironment and restrains cancer progression. In a mouse model of breast cancer resistant to immune-checkpoint or anti-VEGF therapies10,11, inducible genetic deletion of the TGF-ß receptor II (TGFBR2) in CD4+ T cells suppressed tumour growth. For pharmacological blockade, we engineered a bispecific receptor decoy by attaching the TGF-ß-neutralizing TGFBR2 extracellular domain to ibalizumab, a non-immunosuppressive CD4 antibody12,13, and named it CD4 TGF-ß Trap (4T-Trap). Compared with a non-targeted TGF-ß-Trap, 4T-Trap selectively inhibited TH cell TGF-ß signalling in tumour-draining lymph nodes, causing reorganization of tumour vasculature and cancer cell death, a process dependent on the TH2 cytokine interleukin-4 (IL-4). Notably, the 4T-Trap-induced tumour tissue hypoxia led to increased VEGFA expression. VEGF inhibition enhanced the starvation-triggered cancer cell death and amplified the antitumour effect of 4T-Trap. Thus, targeted TGF-ß signalling blockade in helper T cells elicits an effective tissue-level cancer defence response that can provide a basis for therapies directed towards the cancer environment.


Asunto(s)
Neoplasias de la Mama/terapia , Inmunoterapia , Transducción de Señal/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/inmunología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Muerte Celular/efectos de los fármacos , Hipoxia de la Célula , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Interleucina-4/inmunología , Ganglios Linfáticos/citología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Masculino , Ratones , Receptor Tipo II de Factor de Crecimiento Transformador beta/química , Receptor Tipo II de Factor de Crecimiento Transformador beta/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Factor de Crecimiento Transformador beta/inmunología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Nature ; 587(7832): 115-120, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087928

RESUMEN

The immune system uses two distinct defence strategies against infections: microbe-directed pathogen destruction characterized by type 1 immunity1, and host-directed pathogen containment exemplified by type 2 immunity in induction of tissue repair2. Similar to infectious diseases, cancer progresses with self-propagating cancer cells inflicting host-tissue damage. The immunological mechanisms of cancer cell destruction are well defined3-5, but whether immune-mediated cancer cell containment can be induced remains poorly understood. Here we show that depletion of transforming growth factor-ß receptor 2 (TGFBR2) in CD4+ T cells, but not CD8+ T cells, halts cancer progression as a result of tissue healing and remodelling of the blood vasculature, causing cancer cell hypoxia and death in distant avascular regions. Notably, the host-directed protective response is dependent on the T helper 2 cytokine interleukin-4 (IL-4), but not the T helper 1 cytokine interferon-γ (IFN-γ). Thus, type 2 immunity can be mobilized as an effective tissue-level defence mechanism against cancer.


Asunto(s)
Neoplasias/inmunología , Neoplasias/patología , Transducción de Señal/inmunología , Células Th2/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Muerte Celular/efectos de los fármacos , Hipoxia de la Célula , Línea Celular , Progresión de la Enfermedad , Femenino , Regulación de la Expresión Génica/inmunología , Humanos , Interferón gamma/inmunología , Interleucina-4/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/irrigación sanguínea , Neoplasias/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/deficiencia , Transducción de Señal/efectos de los fármacos , Células del Estroma/citología , Células del Estroma/inmunología , Células Th2/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores
7.
J Am Acad Dermatol ; 85(6): 1528-1536, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33744355

RESUMEN

BACKGROUND: The incidence of dermatologic infections in patients receiving checkpoint inhibitors (CPIs) has not been systematically described. OBJECTIVE: Identify the incidence of dermatologic infections in patients who received CPIs. METHODS: Retrospective review of dermatologic infections in patients who received CPIs between 2005 and 2020 and were evaluated by dermatologists at Memorial Sloan Kettering Cancer Center. RESULTS: Of 2061 patients in the study, 1292 were actively receiving CPIs (≤ 90 days since the last dose) and 769 had previously been on CPIs (> 90 days since the last dose). The dermatologic infection rate was significantly higher in patients with active CPI treatment (17.5%) than in patients not actively being treated (8.2%; P < .0001). In patients on CPIs, 82 (36.2%), 78 (34.5%), and 48 (21.2%) had bacterial, fungal, and viral infections, respectively, and 18 (8.0%) had polymicrobial infections. Anti-cytotoxic T-lymphocyte-associated antigen-4 monotherapy was associated with the highest risk of infection (hazard ratio, 2.93; 95% confidence interval, 1.87 to 4.60; P < .001). LIMITATIONS: Retrospective design and sample limited to patients referred to dermatology. CONCLUSIONS: Patients actively receiving CPIs are more susceptible to dermatologic infections, with anti-cytotoxic T-lymphocyte-associated antigen-4 monotherapy carrying the highest risk, suggesting that the index of suspicion for infections should be increased in these patients to minimize morbidity and optimize care.


Asunto(s)
Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico , Incidencia , Neoplasias/tratamiento farmacológico , Estudios Retrospectivos
8.
Infect Immun ; 88(4)2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31964746

RESUMEN

The complex bacterial populations that constitute the gut microbiota can harbor antibiotic resistance genes (ARGs), including those encoding ß-lactamase enzymes (BLA), which degrade commonly prescribed antibiotics such as ampicillin. The prevalence of such genes in commensal bacteria has been increased in recent years by the wide use of antibiotics in human populations and in livestock. While transfer of ARGs between bacterial species has well-established dramatic public health implications, these genes can also function in trans within bacterial consortia, where antibiotic-resistant bacteria can provide antibiotic-sensitive neighbors with leaky protection from drugs, as shown both in vitro and in vivo, in models of lung and subcutaneous coinfection. However, whether the expression of ARGs by harmless commensal bacterial species can destroy antibiotics in the intestinal lumen and shield antibiotic-sensitive pathogens is unknown. To address this question, we colonized germfree or wild-type mice with a model intestinal commensal strain of Escherichia coli that produces either functional or defective BLA. Mice were subsequently infected with Listeria monocytogenes or Clostridioides difficile, followed by treatment with oral ampicillin. The production of functional BLA by commensal E. coli markedly reduced clearance of these pathogens and enhanced systemic dissemination during ampicillin treatment. Pathogen resistance was independent of ARG acquisition via horizontal gene transfer but instead relied on antibiotic degradation in the intestinal lumen by BLA. We conclude that commensal bacteria that have acquired ARGs can mediate shielding of pathogens from the bactericidal effects of antibiotics.


Asunto(s)
Ampicilina/metabolismo , Antibacterianos/metabolismo , Clostridioides difficile/efectos de los fármacos , Escherichia coli/metabolismo , Intestinos/microbiología , Listeria monocytogenes/efectos de los fármacos , beta-Lactamasas/metabolismo , Ampicilina/administración & dosificación , Ampicilina/farmacología , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Clostridioides difficile/crecimiento & desarrollo , Farmacorresistencia Bacteriana , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Hidrólisis , Ratones , Interacciones Microbianas , Viabilidad Microbiana/efectos de los fármacos
9.
J Am Acad Dermatol ; 83(5): 1239-1253, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32461079

RESUMEN

As the incidence of cutaneous malignancies continues to rise and their treatment with immunotherapy expands, dermatologists and their patients are more likely to encounter immune checkpoint inhibitors. While the blockade of immune checkpoint target proteins (cytotoxic T-lymphocyte-associated protein-4, programmed cell death-1, and programmed cell death ligand-1) generates an antitumor response in a substantial fraction of patients, there is a critical need for reliable predictive biomarkers and approaches to address refractory disease. The first article of this Continuing Medical Education series reviews the indications, efficacy, safety profile, and evidence supporting checkpoint inhibition as therapeutics for metastatic melanoma, cutaneous squamous cell carcinoma, and Merkel cell carcinoma. Pivotal studies resulting in the approval of ipilimumab, pembrolizumab, nivolumab, cemiplimab, and avelumab by regulatory agencies for various cutaneous malignancies, as well as ongoing clinical research trials, are discussed.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Carcinoma de Células de Merkel/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Humanos , Melanoma/tratamiento farmacológico
16.
bioRxiv ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38617314

RESUMEN

How genetic lesions drive cell transformation and whether they can be circumvented without compromising function of non-transformed cells are enduring questions in oncology. Here we show that in mature T cells-in which physiologic clonal proliferation is a cardinal feature- constitutive MYC transcription and Tsc1 loss in mice modeled aggressive human malignancy by reinforcing each other's oncogenic programs. This cooperation was supported by MYC-induced large neutral amino acid transporter chaperone SLC3A2 and dietary leucine, which in synergy with Tsc1 deletion overstimulated mTORC1 to promote mitochondrial fitness and MYC protein overexpression in a positive feedback circuit. A low leucine diet was therapeutic even in late-stage disease but did not hinder T cell immunity to infectious challenge, nor impede T cell transformation driven by constitutive nutrient mTORC1 signaling via Depdc5 loss. Thus, mTORC1 signaling hypersensitivity to leucine as an onco-nutrient enables an onco-circuit, decoupling pathologic from physiologic utilization of nutrient acquisition pathways.

17.
Sci Immunol ; 7(70): eabi8642, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35394814

RESUMEN

Innate lymphocytes are integral components of the cellular immune system that can coordinate host defense against a multitude of challenges and trigger immunopathology when dysregulated. Natural killer (NK) cells and innate lymphoid cells (ILCs) are innate immune effectors postulated to functionally mirror conventional cytotoxic T lymphocytes and helper T cells, respectively. Here, we showed that the cytolytic molecule granzyme C was expressed in cells with the phenotype of type 1 ILCs (ILC1s) in mouse liver and salivary gland. Cell fate-mapping and transfer studies revealed that granzyme C-expressing innate lymphocytes could be derived from ILC progenitors and did not interconvert with NK cells, ILC2s, or ILC3s. Granzyme C defined a maturation state of ILC1s. These granzyme C-expressing ILC1s required the transcription factors T-bet and, to a lesser extent, Eomes and support from transforming growth factor-ß (TGF-ß) signaling for their maintenance in the salivary gland. In a transgenic mouse breast cancer model, depleting ILC1s caused accelerated tumor growth. ILC1s gained granzyme C expression following interleukin-15 (IL-15) stimulation, which enabled perforin-mediated cytotoxicity. Constitutive activation of STAT5, a transcription factor regulated by IL-15, in granzyme C-expressing ILC1s triggered lethal perforin-dependent autoimmunity in neonatal mice. Thus, granzyme C marks a cytotoxic effector state of ILC1s, broadening their function beyond "helper-like" lymphocytes.


Asunto(s)
Inmunidad Innata , Interleucina-15 , Animales , Autoinmunidad , Granzimas , Células Asesinas Naturales , Ratones , Perforina
18.
Dermatol Clin ; 39(4): 521-532, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34556242

RESUMEN

Cutaneous findings have increasingly been reported in patients with coronavirus disease 2019 (COVID-19). This review discusses associated skin findings in patients with COVID-19 in the inpatient setting, ranging from vasculopathy-related lesions associated with high hospitalization rate and poor prognosis to inflammatory vesicular and urticarial eruptions that are rarely associated with prolonged hospitalization. We also discuss other reported COVID-19 cutaneous manifestations such as Sweet's syndrome, purpuric eruptions, and Multisystem Inflammatory Syndrome in Children. Although the relationship between dermatologic changes and COVID-19 disease progression is not fully elucidated, familiarity with cutaneous manifestations is valuable for physicians caring for patients hospitalized with COVID-19 and may help improve disease recognition and care.


Asunto(s)
COVID-19/complicaciones , COVID-19/diagnóstico , Pacientes Internos/estadística & datos numéricos , Enfermedades de la Piel/diagnóstico , Enfermedades de la Piel/etiología , Síndrome de Respuesta Inflamatoria Sistémica/complicaciones , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Adulto , COVID-19/patología , Eritema Pernio/diagnóstico , Eritema Pernio/etiología , Niño , Exantema/diagnóstico , Exantema/etiología , Humanos , Pitiriasis Rosada/diagnóstico , Pitiriasis Rosada/etiología , Enfermedades Cutáneas Vasculares/diagnóstico , Enfermedades Cutáneas Vasculares/etiología , Síndrome de Respuesta Inflamatoria Sistémica/patología , Urticaria/diagnóstico , Urticaria/etiología
19.
Science ; 371(6527): 405-410, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33479154

RESUMEN

Infection triggers expansion and effector differentiation of T cells specific for microbial antigens in association with metabolic reprograming. We found that the glycolytic enzyme lactate dehydrogenase A (LDHA) is induced in CD8+ T effector cells through phosphoinositide 3-kinase (PI3K) signaling. In turn, ablation of LDHA inhibits PI3K-dependent phosphorylation of Akt and its transcription factor target Foxo1, causing defective antimicrobial immunity. LDHA deficiency cripples cellular redox control and diminishes adenosine triphosphate (ATP) production in effector T cells, resulting in attenuated PI3K signaling. Thus, nutrient metabolism and growth factor signaling are highly integrated processes, with glycolytic ATP serving as a rheostat to gauge PI3K-Akt-Foxo1 signaling in the control of T cell immunity. Such a bioenergetic mechanism for the regulation of signaling may explain the Warburg effect.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Glucólisis , Lactato Deshidrogenasa 5/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Animales , Linfocitos T CD8-positivos/enzimología , Proteína Forkhead Box O1/metabolismo , Humanos , Lactato Deshidrogenasa 5/genética , Listeria monocytogenes , Listeriosis/enzimología , Listeriosis/inmunología , Ratones , Ratones Mutantes , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Efecto Warburg en Oncología
20.
Int J Womens Dermatol ; 6(5): 414-418, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33898710

RESUMEN

BACKGROUND: Gender disparity in research funding, leadership, authorship, and compensation in medicine is well documented, with most parameters favoring men over women. Gender differences in salary in dermatology have not been well studied. OBJECTIVE: This study aimed to investigate the contribution of gender to dermatologists' compensation in the Veterans Affairs (VA) health care system. METHODS: A retrospective cross-sectional study was conducted by identifying VA-affiliated dermatologists from the U.S. Department of VA website. The contributions of gender, years since graduation, h-index, academic appointment, race, and region on the publicly available salaries were analyzed using a linear-regression model to isolate the effects of gender and interaction with other variables. RESULTS: This study included 247 VA dermatologists with publicly available salaries (114 women and 133 men). On univariate analyses, male dermatologists had significantly higher compensation than female dermatologists (p = .0333). However, male dermatologists also had significantly more years since graduation (p < .0001) and higher h-indices (p < .0001). Multivariate analysis showed that gender was not a significant contributor to salary. Instead, years since graduation (p < .0001), h-index (p = .0066), and academic appointment (p < .0001) contributed significantly to VA dermatologists' salaries. Region and race were not determinants of salary. Gender did not contribute to salary overall, but there was an interactive effect between gender and region (p = .0099). Compared with women, male dermatologists had significantly higher salaries in the Midwest (p < .0018). CONCLUSION: Our study revealed that VA hospitals have maintained gender equality in dermatologist compensation nationally, which could serve as a model to close salary gender gaps in other health care systems. Further research should focus on inclusion of VA physicians from different specialties, as well as across multiple years, to further characterize this observation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA