Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745570

RESUMEN

Vitamin D deficiency is a common deficiency worldwide, particularly among women of reproductive age. During pregnancy, it increases the risk of immune-related diseases in offspring later in life. However, exactly how the body remembers exposure to an adverse environment during development is poorly understood. Herein, we explore the effects of prenatal vitamin D deficiency on immune cell proportions in offspring using vitamin D deficient mice established by dietary manipulation. We show that prenatal vitamin D deficiency alters immune cell proportions in offspring by changing the transcriptional properties of genes downstream of vitamin D receptor signaling in hematopoietic stem and progenitor cells of both the fetus and adults. Further investigations of the associations between maternal vitamin D levels and cord blood immune cell profiles from 75 healthy pregnant women and their term babies also confirm that maternal vitamin D levels significantly affect immune cell proportions in the babies. Thus, lack of prenatal vitamin D, particularly at the time of hematopoietic stem cell migration from the liver to the bone marrow, has long-lasting effects on immune cell proportions. This highlights the importance of providing vitamin D supplementation at specific stages of pregnancy.

2.
Front Endocrinol (Lausanne) ; 13: 860286, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634491

RESUMEN

Vitamin D, a fat-soluble vitamin, plays a critical role in calcium homeostasis, the immune system, and normal development. Many epidemiological cohort studies globally have found high prevalence rates of vitamin D deficiency and insufficiency, recognized as an important health issue that needs to be solved. In particular, reproductive age and pregnant women low in vitamin D status may confer risks of diseases like obesity on their offspring. While observational studies have suggested associations between prenatal vitamin D deficiency and metabolic phenotypes in offspring, not yet determined is whether prenatal vitamin D deficiency permanently alters the development of the liver, a major metabolic organ. We tested the histopathology and the transcriptomic profiles of livers from male C57BL/6J mice exposed to prenatal vitamin D deficiency through a maternal dietary intervention model. We found that prenatal vitamin D deficiency increases the prevalence of histopathological changes in the liver, and alters its gene expression profile. Cell subtype proportion analysis showed that the liver of prenatal vitamin D deficiency alters non-parenchymal cells of the liver, specifically macrophages, a subset of endothelial cells, and dendritic cells. Our results indicate the long-term memory of prenatal vitamin D deficiency exposure in the adult liver, a potential contributor to offspring health risks.


Asunto(s)
Células Endoteliales , Deficiencia de Vitamina D , Animales , Células Endoteliales/metabolismo , Femenino , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Vitamina D/metabolismo , Deficiencia de Vitamina D/epidemiología , Vitaminas
3.
PLoS One ; 17(9): e0275226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36178892

RESUMEN

To gain insights into the molecular interactions of an intracellular pathogen and its host cell, we studied the gene expression and chromatin states of human fibroblasts infected with the Apicomplexan parasite Toxoplasma gondii. We show a striking activation of host cell genes that regulate a number of cellular processes, some of which are protective of the host cell, others likely to be advantageous to the pathogen. The simultaneous capture of host and parasite genomic information allowed us to gain insights into the regulation of the T. gondii genome. We show how chromatin accessibility and transcriptional profiling together permit novel annotation of the parasite's genome, including more accurate mapping of known genes and the identification of new genes and cis-regulatory elements. Motif analysis reveals not only the known T. gondii AP2 transcription factor-binding site but also a previously-undiscovered candidate TATA box-containing motif at one-quarter of promoters. By inferring the transcription factor and upstream cell signaling responses involved in the host cell, we can use genomic information to gain insights into T. gondii's perturbation of host cell physiology. Our resulting model builds on previously-described human host cell signalling responses to T. gondii infection, linked to induction of specific transcription factors, some of which appear to be solely protective of the host cell, others of which appear to be co-opted by the pathogen to enhance its own survival.


Asunto(s)
Parásitos , Toxoplasma , Toxoplasmosis , Animales , Cromatina/genética , Perfilación de la Expresión Génica , Genómica , Humanos , Parásitos/genética , Toxoplasma/genética , Toxoplasmosis/genética , Toxoplasmosis/parasitología , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA