Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLOS Digit Health ; 3(4): e0000473, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602898

RESUMEN

Consumer wearables have been successful at measuring sleep and may be useful in predicting changes in mental health measures such as stress. A key challenge remains in quantifying the relationship between sleep measures associated with physiologic stress and a user's experience of stress. Students from a public university enrolled in the Lived Experiences Measured Using Rings Study (LEMURS) provided continuous biometric data and answered weekly surveys during their first semester of college between October-December 2022. We analyzed weekly associations between estimated sleep measures and perceived stress for participants (N = 525). Through mixed-effects regression models, we identified consistent associations between perceived stress scores and average nightly total sleep time (TST), resting heart rate (RHR), heart rate variability (HRV), and respiratory rate (ARR). These effects persisted after controlling for gender and week of the semester. Specifically, for every additional hour of TST, the odds of experiencing moderate-to-high stress decreased by 0.617 or by 38.3% (p<0.01). For each 1 beat per minute increase in RHR, the odds of experiencing moderate-to-high stress increased by 1.036 or by 3.6% (p<0.01). For each 1 millisecond increase in HRV, the odds of experiencing moderate-to-high stress decreased by 0.988 or by 1.2% (p<0.05). For each additional breath per minute increase in ARR, the odds of experiencing moderate-to-high stress increased by 1.230 or by 23.0% (p<0.01). Consistent with previous research, participants who did not identify as male (i.e., female, nonbinary, and transgender participants) had significantly higher self-reported stress throughout the study. The week of the semester was also a significant predictor of stress. Sleep data from wearable devices may help us understand and to better predict stress, a strong signal of the ongoing mental health epidemic among college students.

2.
Digit Biomark ; 8(1): 120-131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015512

RESUMEN

Introduction: Wearable devices are rapidly improving our ability to observe health-related processes for extended durations in an unintrusive manner. In this study, we use wearable devices to understand how the shape of the heart rate curve during sleep relates to mental health. Methods: As part of the Lived Experiences Measured Using Rings Study (LEMURS), we collected heart rate measurements using the Oura ring (Gen3) for over 25,000 sleep periods and self-reported mental health indicators from roughly 600 first-year university students in the USA during the fall semester of 2022. Using clustering techniques, we find that the sleeping heart rate curves can be broadly separated into two categories that are mainly differentiated by how far along the sleep period the lowest heart rate is reached. Results: Sleep periods characterized by reaching the lowest heart rate later during sleep are also associated with shorter deep and REM sleep and longer light sleep, but not a difference in total sleep duration. Aggregating sleep periods at the individual level, we find that consistently reaching the lowest heart rate later during sleep is a significant predictor of (1) self-reported impairment due to anxiety or depression, (2) a prior mental health diagnosis, and (3) firsthand experience in traumatic events. This association is more pronounced among females. Conclusion: Our results show that the shape of the sleeping heart rate curve, which is only weakly correlated with descriptive statistics such as the average or the minimum heart rate, is a viable but mostly overlooked metric that can help quantify the relationship between sleep and mental health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA