Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 20(5): 3063-3072, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-28721414

RESUMEN

Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm-1, which is subject to interference between the C-H and the O-H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm-1 and another at ∼2880 cm-1. The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H2O-D2O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.

2.
J Phys Chem B ; 123(19): 4251-4257, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31013086

RESUMEN

Water is vital to many biochemical processes and is necessary for driving fundamental interactions of cell membranes with their external environments, yet it is difficult to probe the membrane/water interface directly and without the use of external labels. Here, we employ vibrational sum frequency generation spectroscopy to understand the role of interfacial water molecules above bilayers formed from zwitterionic (phosphatidylcholine) and anionic (phosphatidylglycerol, PG, and phosphatidylserine, PS) lipids as they are exposed to the common polycation poly(allylamine hydrochloride) (PAH) in 100 mM NaCl. We show that as the concentration of PAH is increased, the interfacial water molecules are irreversibly displaced and find that it requires 10 times more PAH to displace interfacial water molecules from membranes formed from purely zwitterionic lipids when compared to membranes that contain the anionic PG and PS lipids. This outcome is likely due to the difference in (1) the energy with which water molecules are bound to the lipid headgroups, (2) the number of water molecules bound to the headgroups, which is related to the headgroup area, and (3) the electrostatic interactions between the PAH molecules and the negatively charged lipids that are favored when compared to the zwitterionic lipid headgroups. The findings presented here contribute to establishing causal relationships in nanotoxicology and to understanding, controlling, and predicting the initial steps that lead to the lysis of cells exposed to membrane-disrupting polycations or to transfection.


Asunto(s)
Membrana Dobles de Lípidos/química , Poliaminas/química , Agua/química , Dimiristoilfosfatidilcolina/química , Enlace de Hidrógeno , Fosfatidilgliceroles/química , Fosfatidilserinas/química
3.
ACS Nano ; 9(9): 8755-65, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26247387

RESUMEN

Given the projected massive presence of redox-active nanomaterials in the next generation of consumer electronics and electric vehicle batteries, they are likely to eventually come in contact with cell membranes, with biological consequences that are currently not known. Here, we present nonlinear optical studies showing that lithium nickel manganese cobalt oxide nanosheets carrying a negative ζ-potential have no discernible consequences for lipid alignment and interleaflet composition in supported lipid bilayers formed from zwitterionic and negatively charged lipids. In contrast, lithiated and delithiated LiCoO2 nanosheets having positive and neutral ζ-potentials, respectively, alter the compositional asymmetry of the two membrane leaflets, and bilayer asymmetry remains disturbed even after rinsing. The insight that some cobalt oxide nanoformulations induce alterations to the compositional asymmetry in idealized model membranes may represent an important step toward assessing the biological consequences of their predicted widespread use.


Asunto(s)
Membrana Celular/efectos de los fármacos , Cobalto/farmacología , Nanoestructuras/química , Óxidos/farmacología , Cobalto/química , Membrana Dobles de Lípidos/química , Potenciales de la Membrana/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Óxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA