Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mol Pharm ; 20(12): 6246-6261, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37975721

RESUMEN

Fungal keratitis (FK) is a fungal infection of the cornea, which is part of the eye and causes corneal ulcers and an increased risk of permanent blindness, which is often found in Candida albicans species. Amphotericin B (AMB), which is a group of polyenes as the first-line treatment of FK, is effective in annihilating C. albicans. However, AMB preparations such as eye drops and ointments have major drawbacks, for instance, requiring more frequent administrations, loss of the drug by the drainage process, and rapid elimination in the precornea, which result in low bioavailability of the drug. An ocular dissolving microneedle containing the solid dispersion amphotericin B (DMN-SD-AMB) had been developed using a mixture of poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) polymers, while the solid dispersion AMB (SD-AMB) was contained in the needle as a drug. This study aims to determine the most optimal and safest DMN-SD-AMB formula for the treatment of FK in the eye as well as a solution to overcome the low bioavailability of AMB eye drops and ointment preparations. SD-AMB had been successfully developed, which was characterized by increased antifungal activity and drug release in vitro compared to other treatments. Furthermore, DMN-SD-AMB studies had also been successfully performed with the best formulation, which exhibited the best ex vivo corneal permeation profile and antifungal activity as well as being safe from eye irritation. In addition, an in vivo antifungal activity using a rabbit infection model shows that the number of fungal colonies was 0.98 ± 0.11 log10 CFU/mL (F3), 5.76 ± 0.32 log10 CFU/mL (AMB eye drops), 4.01 ± 0.28 log10 CFU/mL (AMB ointments), and 9.09 ± 0.65 log10 CFU/mL (control), which differed significantly (p < 0.05). All of these results evidence that DMN-SD-AMB is a new approach to developing intraocular preparations for the treatment of FK.


Asunto(s)
Úlcera de la Córnea , Infecciones Fúngicas del Ojo , Queratitis , Animales , Conejos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Anfotericina B/farmacología , Anfotericina B/uso terapéutico , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/microbiología , Úlcera de la Córnea/tratamiento farmacológico , Candida , Soluciones Oftálmicas/uso terapéutico , Candida albicans
2.
Pharm Dev Technol ; 28(10): 939-947, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37878535

RESUMEN

Thermoplastic polyurethanes (TPU) offer excellent properties for a wide range of dosage forms. These polymers have been successfully utilized in personalized medicine production using fused deposition modeling (FDM) 3D printing (3DP). However, direct powder extrusion (DPE) has been introduced recently as a challenging technique since it eliminates filament production before 3DP, reducing thermal stress, production time, and costs. This study compares DPE and single-screw extrusion for binary (drug-TPU) and ternary (drug-TPU-magnesium stearate [MS]) mixtures containing from 20 to 60% w/w of theophylline. Powder flow, mechanical properties, fractal analysis, and percolation theory were utilized to analyze critical properties of the extrudates. All the mixtures could be processed at a temperature range between 130 and 160 °C. Extrudates containing up to 50% w/w of drug (up to 30% w/w of drug in the case of single-screw extrusion binary filaments) showed toughness values above the critical threshold of 80 kg/mm2. MS improved flow in mixtures where the drug is the only percolating component, reduced until 25 °C the DPE temperature and decreased the extrudate roughness in high drug content systems. The potential of DPE as an efficient one-step additive manufacturing technique in healthcare environments to produce TPU-based tailored on-demand medicines has been demonstrated.


Asunto(s)
Poliuretanos , Impresión Tridimensional , Liberación de Fármacos , Polvos , Composición de Medicamentos/métodos
3.
Mol Pharm ; 19(4): 1191-1208, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35235330

RESUMEN

The need for biocompatible polymers capable of dissolving in the skin while exhibiting reasonable mechanical features and delivery efficiency limits the range of materials that could be utilized in fabricating dissolving microneedle array patches (MAPs). The incorporation of additives, such as surfactants, during microneedle fabrication might be an alternative solution to overcome the limited range of materials used in fabricating dissolving MAPs. However, there is a lacuna in the knowledge on the effect of surfactants on the manufacture and performance of dissolving MAPs. The current study explores the role of surfactants in the manufacture and performance of dissolving MAPs fabricated from poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) loaded with the model drugs, ibuprofen sodium and itraconazole. Three nonionic surfactants, Lutrol F108, Pluronic F88, and Tween 80, in solutions at varying concentrations (0.5, 1.0, and 2.0% w/w) were loaded into these dissolving MAPs. It was discovered that all of the dissolving MAPs that incorporated surfactant displayed a lower reduction in the microneedle height (≈10%) relative to the control formulation (≈20%) when subjected to a compressive force of 32 N. In addition, the incorporation of surfactants in some instances enhanced the insertion profile of these polymeric MAPs when evaluated using ex vivo neonatal porcine skin. The incorporation of surfactant into ibuprofen sodium-loaded dissolving MAPs improved the insertion depth of MAPs from 400 µm down to 600 µm. However, such enhancement was not apparent when the MAPs were loaded with the model hydrophobic drug, itraconazole. Skin deposition studies highlighted that the incorporation of surfactant enhanced the delivery efficiency of both model drugs, ibuprofen sodium and itraconazole. The incorporation of surfactant enhanced the amount of ibuprofen sodium delivered from 60.61% up to ≈75% with a majority of the drug being delivered across the skin and into the receptor compartment. On the other hand, when surfactants were added into MAPs loaded with the model hydrophobic drug itraconazole, we observed enhancement in intradermal delivery efficiency from 20% up to 30%, although this did not improve the delivery of the drug across the skin. This work highlights that the addition of nonionic surfactant is an alternative formulation strategy worth exploring to improve the performance and delivery efficiency of dissolving MAPs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Tensoactivos , Administración Cutánea , Animales , Microinyecciones , Agujas , Piel/metabolismo , Tensoactivos/metabolismo , Porcinos
4.
Molecules ; 27(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335123

RESUMEN

Curcumin (CUR) and D-panthenol (DPA) have been widely investigated for wound-healing treatment. In order to analyse these two compounds from a dosage form, such as polymer-based wound dressings or creams, an analytical method that allows the quantification of both drugs simultaneously should be developed. Here, we report for the first time a validated high-performance liquid chromatographic (HPLC) method coupled with UV detection to quantify CUR and DPA based on the standards set by the International Council on Harmonization (ICH) guidelines. The separation of the analytes was performed using a C18 column that utilised a mobile phase consisting of 0.001% v/v phosphoric acid and methanol using a gradient method with a run time of 15 min. The method is linear for drug concentrations within the range of 0.39-12.5 µg mL-1 (R2 = 0.9999) for CUR and 0.39-25 µg mL-1 for DPA (R2 = 1). The validated method was found to be precise and accurate. Moreover, the CUR and DPA solution was found to be stable under specific storage conditions. We, therefore, suggest that the HPLC-UV method developed in this study may be very useful in screening formulations for CUR and DPA within a preclinical setting through in vitro release studies.


Asunto(s)
Curcumina , Vendajes , Cromatografía Líquida de Alta Presión/métodos , Ácido Pantoténico/análogos & derivados
5.
Mol Pharm ; 17(9): 3487-3500, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32672976

RESUMEN

Implantable devices are versatile and promising drug delivery systems, and their advantages are well established. Of these advantages, long-acting drug delivery is perhaps the most valuable. Hydrophilic compounds are particularly difficult to deliver for prolonged times. This work investigates the use of poly(caprolactone) (PCL)-based implant coatings as a novel strategy to prolong the delivery of hydrophilic compounds from implantable devices that have been prepared by additive manufacturing (AM). Hollow implants were prepared from poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) using fused filament fabrication (FFF) AM and subsequently coated in a PCL-based coating. Coatings were prepared by solution-casting mixtures of differing molecular weights of PCL and poly(ethylene glycol) (PEG). Increasing the proportion of low-molecular-weight PCL up to 60% in the formulations decreased the crystallinity by over 20%, melting temperature by over 4 °C, and water contact angle by over 40°, resulting in an increased degradation rate when compared to pure high-molecular-weight PCL. Addition of 30% PEG to the formulation increased the porosity of the formulation by over 50% when compared to an equivalent PCL-only formulation. These implants demonstrated in vitro release rates for hydrophilic model compounds (methylene blue and ibuprofen sodium) ranging from 0.01 to 34.09 mg/day, depending on the drug used. The versatility of the devices produced in this work and the range of release rates achievable show great potential. Implants could be specifically developed in order to match the specific release rate required for a number of drugs for a wide range of conditions.


Asunto(s)
Preparaciones de Acción Retardada/química , Preparaciones Farmacéuticas/química , Poliésteres/química , Implantes Absorbibles , Sistemas de Liberación de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Polietilenglicoles/química , Alcohol Polivinílico/química , Impresión Tridimensional
6.
Int J Mol Sci ; 18(2)2017 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-28165411

RESUMEN

Some agricultural residues such as wheat or barley straw, as well as certain fast-growing plants like Leucaena leucocephala and Chamaecytisus proliferus, could be used as raw materials for the paper industry as an alternative to traditional plants (eucalyptus, pine, etc.). In the present study, four types of lignin obtained from the spent liquors produced by the pulping processes using the abovementioned feedstocks were isolated and characterized. Lignin samples were acquired through an acid precipitation from these spent liquors. The characterization of the precipitated lignin samples were performed using a Fourier transform infrared spectroscopy (FT-IR) and both liquid- and solid-state nuclear magnetic resonance spectroscopy (NMR) to analyse the chemical structure, and thermogravimetric analysis (TGA) for determining the thermal properties. Additionally, chemical composition of lignin fractions was also measured. Even though they were of different botanical origin, all the studied samples except for wheat straw lignin had a similar chemical composition and thermal behaviour, and identical chemical structure. Wheat straw lignin showed a greater amount of Klason lignin and lower carbohydrate content. Furthermore, this lignin sample showed a higher thermal stability and significantly different cross-peak patterns in the 2D-NMR experiments. The molecular structures corresponding to p-coumarate (PCA), ferulate (FA) and cinnamyl aldehyde end-groups (J) were only detected in wheat isolated lignin.


Asunto(s)
Fabaceae/química , Lignina/química , Lignina/aislamiento & purificación , Poaceae/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
7.
Materials (Basel) ; 17(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930221

RESUMEN

Antibiotic resistance is a global health crisis caused by the overuse and misuse of antibiotics. Accordingly, bacteria have developed mechanisms to resist antibiotics. This crisis endangers public health systems and medical procedures, underscoring the urgent need for novel antimicrobial agents. This study focuses on the green synthesis of ZnO nanoparticles (NPs) using aqueous extracts from Nepeta nepetella subps. amethystine leaves and stems, employing different zinc sulfate concentrations (0.5, 1, and 2 M). NP characterization included transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD), along with Fourier transform infrared spectroscopy (FTIR) analysis. This study aimed to assess the efficacy of ZnO NPs, prepared at varying concentrations of zinc sulfate, for their capacity to inhibit both Gram-positive and Gram-negative bacteria, as well as their antioxidant potential using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. SEM and TEM results showed predominantly spherical NPs. The smallest size (18.5 ± 1.3 nm for leaves and 18.1 ± 1.3 nm for stems) occurred with the 0.5 M precursor concentration. These NPs also exhibited remarkable antibacterial activity against both Gram-positive and Gram-negative bacteria at 10 µg/mL, as well as the highest antioxidant activity, with an IC50 (the concentration of NPs that scavenge 50% of the initial DPPH radicals) of 62 ± 0.8 (µg/mL) for the leaves and 35 ± 0.6 (µg/mL) for the stems. NPs and precursor concentrations were modeled to assess their impact on bacteria using a 2D polynomial equation. Response surface plots identified optimal concentration conditions for antibacterial effectiveness against each species, promising in combating antibiotic resistance.

8.
Gels ; 10(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39057443

RESUMEN

Hydrogels are materials made of crosslinked 3D networks of hydrophilic polymer chains that can absorb and retain significant amounts of water due to their hydrophilic structure without being dissolved. In relation to alternative biomaterials, hydrogels offer increased biocompatibility and biodegradability, giving them distinct advantages. Thus, hydrogel platforms are considered to have the potential for the development of biomedical applications. In this study, the main objective was the development of hybrid hydrogels to act as a drug delivery platform. These hydrogels were made from chitosan (CH) and type A gelatin (G), two natural polymers that provide a supportive environment for cellular attachment, viability, and growth, thanks to their unique properties. Particularly, the use of gelatins for drug delivery systems provides biodegradability, biocompatibility, and non-toxicity, which are excellent properties to be used in the human body. However, gelatins have some limitations, such as thermal instability and poor mechanical properties. In order to improve those properties, the aim of this work was the development and characterization of hybrid hydrogels with different ratios of CH-G (100-0, 75-25, 50-50, 25-75, 0-100). Hydrogels were characterized through multiple techniques, including Fourier transform infrared (FTIR) spectroscopy, rheological and microstructural studies, among others. Moreover, a model hydrophilic drug molecule (tetracycline) was incorporated to evaluate the feasibility of this platform to sustain the release of hydrophilic drugs, by being tested in a solution of Phosphate Buffer Solution at a pH of 7.2 and at 37 °C. The results revealed that the synergy between chitosan and type A gelatin improved the mechanical properties as well as the thermal stability of it, revealing that the best ratios of the biopolymers are 50-50 CH-G and 75-25 CH-G. Thereby, these systems were evaluated in a controlled release of tetracycline, showing a controlled drug delivery of 6 h and highlighting their promising application as a platform for controlled drug release.

9.
Int J Pharm ; 660: 124307, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38852748

RESUMEN

Red fruit (Pandanus conoideus Lam.) boasts high ß-carotene (BC) content, often consumed orally. However, absorption issues and low bioavailability due to food matrix interaction have led to transdermal delivery exploration. Nevertheless, BC has a short skin retention time. To address these limitations, this study formulates a ß-carotene solid dispersion (SD-BC) loaded thermoresponsive gel combined with polymeric solid microneedles (PSM) to enhance in vivo skin bioavailability. Characterization of SD-BC includes saturation solubility, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and in vitro release. Characterization of SD-BC thermoresponsive gel includes gelation temperature, viscosity, rheological behaviour, pH, bio-adhesiveness, spreadability, and extrudability. PSM's mechanical properties and insertion capability were assessed. Ex vivo and in vivo dermato-pharmacokinetic studies, drug content, hemolysis, and skin irritation assessments were conducted to evaluate overall performance. Results confirm amorphous SD-BC formation, enhancing solubility. Both SD-BC thermoresponsive gel and PSM exhibit favourable characteristics, including rheological properties and mechanical strength. In vitro release studies showed a seven-fold increase in BC release compared to plain hydrogel. SD-BC thermoresponsive gel combined with PSM achieves superior ex vivo permeation (Cmax = 305.43 ± 32.07 µg.mL-1) and enhances in vivo dermato-pharmacokinetic parameters by 200-400 %. Drug content, hemolysis, and skin irritation studies confirmed its safety and non-toxicity.


Asunto(s)
Administración Cutánea , Frutas , Geles , Agujas , Absorción Cutánea , Piel , beta Caroteno , Animales , beta Caroteno/administración & dosificación , beta Caroteno/farmacocinética , beta Caroteno/química , Frutas/química , Piel/metabolismo , Temperatura , Liberación de Fármacos , Sistemas de Liberación de Medicamentos , Disponibilidad Biológica , Solubilidad , Polímeros/química , Masculino , Reología , Viscosidad
10.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38139801

RESUMEN

Polymeric-based drug delivery systems have become versatile and valuable candidates in sectors such as pharmaceuticals, health, medicine, etc [...].

11.
ACS Sens ; 8(11): 4161-4170, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37856156

RESUMEN

Wearable devices based on microneedle (MN) technology have recently emerged as tools for in situ transdermal sensing or delivery in interstitial fluid (ISF). Particularly, MN-based electrochemical sensors allow the continuous monitoring of analytes in a minimally invasive manner through ISF. Exogenous small molecules found in ISF such as therapeutic drugs are ideal candidates for MN sensors due to their correlation with blood levels and their relevance for the optimal management of personalized therapies. Herein, a hollow MN array patch is modified with conductive pastes and functionalized with cross-linked chitosan to develop an MN-based voltammetric sensor for continuous monitoring of methotrexate (MTX). Interestingly, the chitosan coating avoids biofouling while enabling the adsorption of MTX at the electrode's surface for sensitive analysis. The MN sensor exhibits excellent analytical performance in vitro with protein-enriched artificial ISF and ex vivo under a Franz diffusion cell configuration. The MN sensor shows a linear range from 25 to 400 µM, which fits within the therapeutic range of high-dose MTX treatment for cancer patients and an excellent continuous operation for more than two days. Moreover, an iontophoretic hollow MN array patch is developed with the integration of both the anode and cathode in the single MN array patch. The ex vivo characterization demonstrates the transdermal on-demand drug delivery of MTX. Overall, the combination of both MN patches represents impactful progress in closed-loop systems for therapeutic drug management in disorders such as cancer, rheumatoid arthritis, or psoriasis.


Asunto(s)
Quitosano , Neoplasias , Dispositivos Electrónicos Vestibles , Humanos , Metotrexato/uso terapéutico , Agujas
12.
Pharmaceutics ; 15(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36678872

RESUMEN

Triamcinolone acetonide (TA) is a corticosteroid that has been used to treat posterior segment eye diseases. TA is injected intravitreally in the management of neovascular disorders; however, frequent intravitreal injections result in many potential side effects and poor patient compliance. In this work, a 3D bioprinter was used to prepare polycaprolactone (PCL) implants loaded with TA. Implants were manufactured with different shapes (filament-, rectangular-, and circle-shaped) and drug loadings (5, 10, and 20%). The characterisation results showed that TA was successfully mixed and incorporated within the PCL matrix without using solvents, and drug content reached almost 100% for all formulations. The drug release data demonstrate that the filament-shaped implants (SA/V ratio~7.3) showed the highest cumulative drug release amongst all implant shapes over 180 days, followed by rectangular- (SA/V ratio~3.7) and circle-shaped implants (SA/V ratio~2.80). Most implant drug release data best fit the Korsmeyer−Peppas model, indicating that diffusion was the prominent release mechanism. Additionally, a biocompatibility study was performed; the results showed >90% cell viability, thus proving that the TA-loaded PCL implants were safe for ocular application.

13.
Int J Pharm ; 644: 123292, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37553057

RESUMEN

Skin and soft tissue infections (SSTIs) arise from microbial ingress into the skin. In this study, poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (polyAMPS), which has been reported to exhibit antimicrobial properties was synthesised for the manufacture of microarray patches (MAPs). The free acid and sodium salt of polyAMPS with controlled molar masses and narrow dispersity were synthesised via reversible addition - fragmentation chain-transfer (RAFT) polymerisation reaction with a monomer conversion of over 99%, as determined by 1H NMR. The polymers were shown to be biocompatible when evaluated using a fibroblast dermal cell line while agar plating assay using cultures of C. albican demonstrated that the acid form of polyAMPS exhibited antimicrobial inhibition, which is potentiated in the presence of antimicrobial agents. The synthesised polymers were then used to fabricate dissolving MAPs, which were loaded with either ITRA or levofloxacin (LEV). The MAPs displayed acceptable mechanical resistance and punctured ex vivo skin to a depth of 600 µm. Skin deposition studies revealed that the MAPs were able to administer up to âˆ¼ 1.9 mg of LEV (delivery efficiency: 94.7%) and âˆ¼ 0.2 mg of ITRA (delivery efficiency: 45.9%), respectively. Collectively, the synthesis and development of this novel pharmaceutical system may offer a strategy to manage SSTIs.


Asunto(s)
Antiinfecciosos , Ácidos Sulfónicos , Antifúngicos/metabolismo , Antibacterianos/metabolismo , Piel/metabolismo , Administración Cutánea , Polímeros/química , Agujas , Sistemas de Liberación de Medicamentos
14.
Int J Pharm X ; 5: 100142, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36531743

RESUMEN

Bacterial vaginosis (BV) is an abnormal condition caused by the change of microbiota in the vagina. One of the most common bacteria found in the case of BV is Gardnerella vaginalis, which is categorised as anaerobic facultative bacteria. Currently, the available treatment for BV is the use of antibiotics, such as metronidazole (MTZ), in topical and oral dosage forms. The limitation of the currently available treatment is that multiple administration is required and thus, the patient needs to apply the drug frequently to maintain the drug efficacy. To address these limitations, this research proposed prolonged delivery of MTZ in the form of intravaginal devices made from biodegradable and biocompatible polymers. Semi-solid extrusion (SSE) 3D printing was used to prepare the intravaginal devices. The ratio of high and low molecular weight poly(caprolactone) (PCL) was varied to evaluate the effect of polymer composition on the drug release. The versatility of SSE 3D printer was used to print the intravaginal devices into two different shapes (meshes and discs) and containing two different polymer layers made from PCL and a copolymer of methyl vinyl ether and maleic anhydride (Gantrez™-AN119), which provided mucoadhesive properties. Indeed, this layer made from Gantrez™-AN119 increased ca. 5 times the mucoadhesive properties of the final 3D-printed devices (from 0.52 to 2.57 N). Furthermore, MTZ was homogenously dispersed within the polymer matrix as evidenced by scanning electron microscopy analysis. Additionally, in vitro drug release, and antibacterial activity of the MTZ-loaded intravaginal devices were evaluated. Disc formulations were able to sustain the release of MTZ for 72 h for formulations containing 70/30 and 60/40 ratio of high molecular weight/low molecular weight PCL. On the other hand, the discs containing a 50/50 ratio of high molecular weight/low molecular weight PCL showed up to 9 days of release. However, no significant differences in the MTZ release from the MTZ-loaded meshes (60/40 and 50/50 ratio of high molecular weight/low molecular weight PCL) were found after 24 h. The results showed that the different ratios of high and low molecular weight PCL did not significantly affect the MTZ release. However, the shape of the devices did influence the release of MTZ, showing that larger surface area of the meshes provided a faster MTZ release. Moreover, MTZ loaded 3D-printed discs (5% w/w) were capable of inhibiting the growth of Gardnerella vaginalis. These materials showed clear antimicrobial properties, exhibiting a zone of inhibition of 19.0 ± 1.3 mm. Based on these findings, the manufactured represent a valuable alternative approach to the current available treatment, as they were able to provide sustained release of MTZ, reducing the frequency of administration and thus improving patient compliance.

15.
Pharmaceutics ; 15(3)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36986704

RESUMEN

The use of intranasal implantable drug delivery systems has many potential advantages for the treatment of different diseases, as they can provide sustained drug delivery, improving patient compliance. We describe a novel proof-of-concept methodological study using intranasal implants with radiolabeled risperidone (RISP) as a model molecule. This novel approach could provide very valuable data for the design and optimization of intranasal implants for sustained drug delivery. RISP was radiolabeled with 125I by solid supported direct halogen electrophilic substitution and added to a poly(lactide-co-glycolide) (PLGA; 75/25 D,L-Lactide/glycolide ratio) solution that was casted on top of 3D-printed silicone molds adapted for intranasal administration to laboratory animals. Implants were intranasally administered to rats, and radiolabeled RISP release followed for 4 weeks by in vivo non-invasive quantitative microSPECT/CT imaging. Percentage release data were compared with in vitro ones using radiolabeled implants containing either 125I-RISP or [125I]INa and also by HPLC measurement of drug release. Implants remained in the nasal cavity for up to a month and were slowly and steadily dissolved. All methods showed a fast release of the lipophilic drug in the first days with a steadier increase to reach a plateau after approximately 5 days. The release of [125I]I- took place at a much slower rate. We herein demonstrate the feasibility of this experimental approach to obtain high-resolution, non-invasive quantitative images of the release of the radiolabeled drug, providing valuable information for improved pharmaceutical development of intranasal implants.

16.
Expert Opin Drug Deliv ; 20(4): 507-522, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36924328

RESUMEN

INTRODUCTION: It is widely acknowledged that cardiovascular diseases (CVDs) continue to be the leading cause of death globally. Furthermore, CVDs are the leading cause of diminished quality of life for patients, frequently as a result of their progressive deterioration. Medical implants that release drugs into the body are active implants that do more than just provide mechanical support; they also have a therapeutic role. Primarily, this is achieved through the controlled release of active pharmaceutical ingredients (API) at the implementation site. AREAS COVERED: In this review, the authors discuss drug-eluting stents, drug-eluting vascular grafts, and drug-eluting cardiac patches with the aim of providing a broad overview of the three most common types of cardiac implant. EXPERT OPINION: Drug eluting implants are an ideal alternative to traditional drug delivery because they allow for accurate drug release, local drug delivery to the target tissue, and minimize the adverse side effects associated with systemic administration. Despite the fact that there are still challenges that need to be addressed, the ever-evolving new technologies are making the fabrication of drug-eluting implants a rewarding therapeutic endeavor with the possibility for even greater advances.


Asunto(s)
Enfermedades Cardiovasculares , Stents Liberadores de Fármacos , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Preparaciones Farmacéuticas , Calidad de Vida , Sistemas de Liberación de Medicamentos , Implantes de Medicamentos
17.
Lab Chip ; 23(9): 2304-2315, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37073607

RESUMEN

Transdermal drug delivery has emerged as an alternative administration route for therapeutic drugs, overcoming current issues in oral and parenteral administration. However, this technology is hindered by the low permeability of the stratum corneum of the skin. In this work, we develop a synergic combination of two enhancing technologies to contribute to an improved and on-demand drug delivery through an iontophoretic system coupled with hollow microneedles (HMNs). For the first time, a polymeric HMN array coupled with integrated iontophoresis for the delivery of charged molecules and macromolecules (e.g. proteins) is devised. To prove the concept, methylene blue, fluorescein sodium, lidocaine hydrochloride, and bovine serum albumin-fluorescein isothiocyanate conjugate (BSA-FITC) were first tested in an in vitro setup using 1.5% agarose gel model. Subsequently, the ex vivo drug permeation study using a Franz diffusion cell was conducted, exhibiting a 61-fold, 43-fold, 54-fold, and 17-fold increment of the permeation of methylene blue, fluorescein sodium, lidocaine hydrochloride, and BSA-FITC, respectively, during the application of 1 mA cm-2 current for 6 h. Moreover, the total amount of drug delivered (i.e. in the skin and receptor compartment) was analysed to untangle the different delivery profiles according to the types of molecule. Finally, the integration of the anode and cathode into an iontophoretic hollow microneedle array system (IHMAS) offers the full miniaturisation of the concept. Overall, the IHMAS device provides a versatile wearable technology for transdermal on-demand drug delivery that can improve the administration of personalised doses, and potentially enhance precision medicine.


Asunto(s)
Azul de Metileno , Absorción Cutánea , Azul de Metileno/metabolismo , Fluoresceína/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Piel/metabolismo , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas/metabolismo , Agujas , Lidocaína/metabolismo
18.
Int J Pharm ; 646: 123446, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37751787

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a prevailing bacterial pathogen linked to superficial skin and soft tissue infections (SSTIs). Rifampicin (RIF), a potent antibiotic against systemic and localised staphylococcal infections, faces limitations due to its low solubility. This constraint hampers its therapeutic potential for MRSA-induced SSTIs. To address this, an advanced liposomal system was designed for efficient dermal RIF delivery. Rifampicin-loaded liposomes (LipoRIF) were embedded within polymeric dissolving microneedles (DMNs) to enable targeted intradermal drug delivery. A robust Design of Experiment (DoE) methodology guided the systematic preparation and optimisation of LipoRIF formulations. The optimal LipoRIF formulation integrated within polymeric DMNs. These LipoRIF-DMNs exhibited favourable mechanical properties and effective skin insertion characteristics. Notably, in vitro assays on skin deposition unveiled a transformative result - the DMN platform significantly enhanced LipoRIF deposition within the skin, surpassing LipoRIF dispersion alone. Moreover, LipoRIF-DMNs displayed minimal cytotoxicity toward cells. Encouragingly, rigorous in vitro antimicrobial evaluations demonstrated LipoRIF-DMNs' capacity to inhibit MRSA growth compared to the control group. LipoRIF-DMNs propose a potentially enhanced, minimally invasive approach to effectively manage SSTIs and superficial skin ailments stemming from MRSA infections.

19.
Int J Pharm ; 631: 122477, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36509226

RESUMEN

Implantable drug-eluting devices that provide therapeutic cover over an extended period of time following a single administration have potential to improve the treatment of chronic conditions. These devices eliminate the requirement for regular and frequent drug administration, thus reducing the pill burden experienced by patients. Furthermore, the use of modern technologies, such as 3D printing, during implant development and manufacture renders this approach well-suited for the production of highly tuneable devices that can deliver treatment regimens which are personalised for the individual. The objective of this work was to formulate subcutaneous implants loaded with a model hydrophobic compound, olanzapine (OLZ) using robocasting - a 3D-printing technique. The formulated cylindrical implants were prepared from blends composed of OLZ mixed with either poly(caprolactone) (PCL) or a combination of PCL and poly(ethylene)glycol (PEG). Implants were characterised using scanning electron microscopy (SEM), thermal analysis, infrared spectroscopy, and X-ray diffraction and the crystallinity of OLZ in the formulated devices was confirmed. In vitro release studies demonstrated that all the formulations were capable of maintaining sustained drug release over a period of 200 days, with the maximum percentage drug release observed to be c.a. 60 % in the same period.


Asunto(s)
Poliésteres , Polímeros , Humanos , Polímeros/química , Poliésteres/química , Polietilenglicoles/química , Portadores de Fármacos/química , Impresión Tridimensional
20.
Artículo en Inglés | MEDLINE | ID: mdl-38051475

RESUMEN

The leading cause of death worldwide and a significant factor in decreased quality of life are the cardiovascular diseases. Endovascular operations like angioplasty, stent placement, or atherectomy are often used in vascular surgery to either dilate a narrowed blood artery or remove a blockage. As an alternative, a vascular transplant may be utilised to replace or bypass a dysfunctional or blocked blood vessel. Despite the advancements in endovascular surgery and its popularisation over the past few decades, vascular bypass grafting remains prevalent and is considered the best option for patients in need of long-term revascularisation treatments. Consequently, the demand for synthetic vascular grafts composed of biocompatible materials persists. To address this need, biodegradable clopidogrel (CLOP)-loaded vascular grafts have been fabricated using the digital light processing (DLP) 3D printing technique. A mixture of polylactic acid-polyurethane acrylate (PLA-PUA), low molecular weight polycaprolactone (L-PCL), and CLOP was used to achieve the required mechanical and biological properties for vascular grafts. The 3D printing technology provides precise detail in terms of shape and size, which lead to the fabrication of customised vascular grafts. The fabricated vascular grafts were fully characterised using different techniques, and finally, the drug release was evaluated. Results suggested that the performed 3D-printed small-diameter vascular grafts containing the highest CLOP cargo (20% w/w) were able to provide a sustained drug release for up to 27 days. Furthermore, all the CLOP-loaded 3D-printed materials resulted in a substantial reduction of the platelet deposition across their surface compared to the blank materials containing no drug. Haemolysis percentage for all the 3D-printed samples was lower than 5%. Moreover, 3D-printed materials were able to provide a supportive environment for cellular attachment, viability, and growth. A substantial increase in cell growth was detected between the blank and drug-loaded grafts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA