Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Glia ; 69(3): 513-531, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33052610

RESUMEN

The crosstalk between glial cells and neurons represents an exceptional feature for maintaining the normal function of the central nervous system (CNS). Increasing evidence has revealed the importance of glial progenitor cells in adult neurogenesis, reestablishment of cellular pools, neuroregeneration, and axonal (re)myelination. Several types of glial progenitors have been described, as well as their potentialities for recovering the CNS from certain traumas or pathologies. Among these precursors, glial-restricted precursor cells (GRPs) are considered the earliest glial progenitors and exhibit tripotency for both Type I/II astrocytes and oligodendrocytes. GRPs have been derived from embryos and embryonic stem cells in animal models and have maintained their capacity for self-renewal. Despite the relatively limited knowledge regarding the isolation, characterization, and function of these progenitors, GRPs are promising candidates for transplantation therapy and reestablishment/repair of CNS functions in neurodegenerative and neuropsychiatric disorders, as well as in traumatic injuries. Herein, we review the definition, isolation, characterization and potentialities of GRPs as cell-based therapies in different neurological conditions. We briefly discuss the implications of using GRPs in CNS regenerative medicine and their possible application in a clinical setting. MAIN POINTS: GRPs are progenitors present in the CNS with differentiation potential restricted to the glial lineage. These cells have been employed in the treatment of a myriad of neurodegenerative and traumatic pathologies, accompanied by promising results, herein reviewed.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Neuroglía , Animales , Diferenciación Celular , Enfermedades del Sistema Nervioso Central/terapia , Neuronas , Células Madre
2.
Glia ; 66(1): 5-14, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28940651

RESUMEN

In the central nervous system, oligodendrocyte precursor cells are exclusive in their potential to differentiate into myelinating oligodendrocytes. Oligodendrocyte precursor cells migrate within the parenchyma and extend cell membrane protrusions that ultimately evolve into myelinating sheaths able to wrap neuronal axons and significantly increase their electrical conductivity. The subcellular force generating mechanisms driving morphological and functional transformations during oligodendrocyte differentiation and myelination remain elusive. In this review, we highlight the mechanical processes governing oligodendrocyte plasticity in a dynamic interaction with the extracellular matrix.


Asunto(s)
Diferenciación Celular/fisiología , Plasticidad de la Célula/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Animales , Sistema Nervioso Central/fisiología , Matriz Extracelular/metabolismo , Humanos
3.
Glia ; 66(9): 1826-1844, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29732611

RESUMEN

During central nervous system development, oligodendrocytes form structurally and functionally distinct actin-rich protrusions that contact and wrap around axons to assemble myelin sheaths. Establishment of axonal contact is a limiting step in myelination that relies on the oligodendrocyte's ability to locally coordinate cytoskeletal rearrangements with myelin production, under the control of a transcriptional differentiation program. The molecules that provide fine-tuning of actin dynamics during oligodendrocyte differentiation and axon ensheathment remain largely unidentified. We performed transcriptomics analysis of soma and protrusion fractions from rat brain oligodendrocyte progenitors and found a subcellular enrichment of mRNAs in newly-formed protrusions. Approximately 30% of protrusion-enriched transcripts encode proteins related to cytoskeleton dynamics, including the junction mediating and regulatory protein Jmy, a multifunctional regulator of actin polymerization. Here, we show that expression of Jmy is upregulated during myelination and is required for the assembly of actin filaments and protrusion formation during oligodendrocyte differentiation. Quantitative morphodynamics analysis of live oligodendrocytes showed that differentiation is driven by a stereotypical actin network-dependent "cellular shaping" program. Disruption of actin dynamics via knockdown of Jmy leads to a program fail resulting in oligodendrocytes that do not acquire an arborized morphology and are less efficient in contacting neurites and forming myelin wraps in co-cultures with neurons. Our findings provide new mechanistic insight into the relationship between cell shape dynamics and differentiation in development.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Diferenciación Celular/fisiología , Proteínas Nucleares/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Transactivadores/metabolismo , Transcriptoma , Animales , Encéfalo/citología , Encéfalo/metabolismo , Técnicas de Cocultivo , Regulación de la Expresión Génica , Neuronas/citología , Neuronas/metabolismo , ARN Mensajero/metabolismo , Ratas Wistar
4.
Stem Cell Rev Rep ; 16(6): 1121-1138, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32803697

RESUMEN

The number of patients undergoing joint replacement surgery has progressively increased worldwide due to world population ageing. In the Unites States, for example, the prevalence of hip and knee replacements has increased more than 6 and 10 times, respectively, since 1980. Despite advances in orthopaedic implant research, including the development of novel implantable biomaterials, failures are still observed due to inadequate biomechanical compliance at the bone-implant interface. This comprises static and dynamic mechanical mismatch between the bone and the implant surface. The importance and robustness of biomechanical cues for controlling osteogenic differentiation of mesenchymal stem cells (MSC) have been highlighted in recent studies. However, in the context of bone regenerative medicine, it remains elusive how mechanobiological signals controlling MSC osteogenic differentiation dynamics are modulated in their interaction with the bone and with implants. In this review, we highlight recent technological advances aiming to improve host bone-implant interactions based on the osteogenic and mechanoresponsive potential of MSC, in the context of joint replacement surgery. First, we discuss the extracellular and intracellular mechanical forces underlying proper receptivity and stimulation of physiological MSC differentiation and linked osteogenic activity. Second, we provide a critical overview on how this knowledge can be integrated towards the development of biomaterials for improved bone-implant interfaces. Third, we discuss cross-disciplinarily which contributes to the next generation design of novel pro-active orthopaedic implants and their implantation success. Graphical Abstract.


Asunto(s)
Interfase Hueso-Implante/fisiología , Mecanotransducción Celular , Ingeniería de Tejidos/métodos , Animales , Artroplastia , Humanos , Osteogénesis , Resultado del Tratamiento
5.
Front Cell Dev Biol ; 8: 483, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612996

RESUMEN

Reciprocal neuron-glia cell communication is fundamental for the proper function of the nervous system. Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that insulate and provide trophic support to neurons. This effective interaction is crucial not only for myelination but also for long-term axonal survival and neural connectivity. In recent years, exosomes have been portrayed as key players in intercellular interaction in the context of the healthy and diseased CNS. They act as communicating vehicles, true attachés operating between neurons and glial cells. Despite the complex exosome circuitry within the nervous system, experimental evidence supports the role of exosomes in modulating myelination. Oligodendrocytes secrete exosomes in response to neuronal signals in an electric activity-dependent manner. These released exosomes are then internalized by neurons, contributing to their integrity and activity. In turn, neurons secrete exosomes to control the communication between them and with myelinating cells in order to regulate synaptic function in neuronal development, myelin maintenance, and neuroregeneration. In this review, we provide a critical view of the current understanding on how exosomes, either from CNS-resident cells or from the periphery, contribute to the formation and maintenance of myelin and, additionally, on how the differential content of exosomes in normal and pathological conditions foresees the use of these nanovesicles as putative diagnostic and/or therapeutical agents in white matter degeneration-associated diseases.

6.
Front Cell Dev Biol ; 4: 71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27551677

RESUMEN

Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair.

7.
Front Cell Dev Biol ; 4: 79, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27562149

RESUMEN

[This corrects the article DOI: 10.3389/fcell.2016.00071.].

8.
PLoS One ; 5(11): e15531, 2010 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-21209700

RESUMEN

BACKGROUND: There is consensus that experimental autoimmune encephalomyelitis (EAE) can be mediated by myelin specific T cells of Th1 as well as of Th17 phenotype, but the contribution of either subset to the pathogenic process has remained controversial. In this report, we compare functional differences and pathogenic potential of "monoclonal" T cell lines that recognize myelin oligodendrocyte glycoprotein (MOG) with the same transgenic TCR but are distinguished by an IFN-γ producing Th1-like and IL-17 producing Th17-like cytokine signature. METHODS AND FINDINGS: CD4+ T cell lines were derived from the transgenic mouse strain 2D2, which expresses a TCR recognizing MOG peptide 35-55 in the context of I-A(b). Adoptive transfer of Th1 cells into lymphopenic (Rag2⁻/⁻) recipients, predominantly induced "classic" paralytic EAE, whereas Th17 cells mediated "atypical" ataxic EAE in approximately 50% of the recipient animals. Combination of Th1 and Th17 cells potentiated the encephalitogenicity inducing classical EAE exclusively. Th1 and Th17 mediated EAE lesions differed in their composition but not in their localization within the CNS. While Th1 lesions contained IFN-γ, but no IL-17 producing T cells, the T cells in Th17 lesions showed plasticity, substantially converting to IFN-γ producing Th1-like cells. Th1 and Th17 cells differed drastically by their lytic potential. Th1 but not Th17 cells lysed autoantigen presenting astrocytes and fibroblasts in vitro in a contact-dependent manner. In contrast, Th17 cells acquired cytotoxic potential only after antigenic stimulation and conversion to IFN-γ producing Th1 phenotype. CONCLUSIONS: Our data demonstrate that both Th1 and Th17 lineages possess the ability to induce CNS autoimmunity but can function with complementary as well as differential pathogenic mechanisms. We propose that Th17-like cells producing IL-17 are required for the generation of atypical EAE whereas IFN-γ producing Th1 cells induce classical EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Glicoproteína Asociada a Mielina/inmunología , Células TH1/inmunología , Células Th17/inmunología , Traslado Adoptivo , Animales , Astrocitos/inmunología , Astrocitos/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Diferenciación Celular/inmunología , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Citotoxicidad Inmunológica/inmunología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-17/inmunología , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas de la Mielina , Glicoproteína Mielina-Oligodendrócito , Bazo/inmunología , Bazo/metabolismo , Bazo/patología , Células TH1/metabolismo , Células TH1/trasplante , Células Th17/metabolismo , Células Th17/trasplante
9.
J Exp Med ; 206(6): 1303-16, 2009 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-19487416

RESUMEN

We describe new T cell receptor (TCR) transgenic mice (relapsing-remitting [RR] mice) carrying a TCR specific for myelin oligodendrocyte glycoprotein (MOG) peptide 92-106 in the context of I-A(s). Backcrossed to the SJL/J background, most RR mice spontaneously develop RR experimental autoimmune encephalomyelitis (EAE) with episodes often altering between different central nervous system tissues like the cerebellum, optic nerve, and spinal cord. Development of spontaneous EAE depends on the presence of an intact B cell compartment and on the expression of MOG autoantigen. There is no spontaneous EAE development in B cell-depleted mice or in transgenic mice lacking MOG. Transgenic T cells seem to expand MOG autoreactive B cells from the endogenous repertoire. The expanded autoreactive B cells produce autoantibodies binding to a conformational epitope on the native MOG protein while ignoring the T cell target peptide. The secreted autoantibodies are pathogenic, enhancing demyelinating EAE episodes. RR mice constitute the first spontaneous animal model for the most common form of multiple sclerosis (MS), RR MS.


Asunto(s)
Linfocitos B/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Ratones Transgénicos , Glicoproteína Asociada a Mielina/inmunología , Fragmentos de Péptidos/inmunología , Receptores de Antígenos de Linfocitos T , Linfocitos T/inmunología , Animales , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Linfocitos B/citología , Encéfalo/metabolismo , Encéfalo/patología , Activación de Complemento , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Humanos , Inmunoglobulinas/inmunología , Interferones/inmunología , Interleucinas/inmunología , Masculino , Ratones , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Proteínas de la Mielina , Glicoproteína Asociada a Mielina/genética , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Péptidos/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Médula Espinal/metabolismo , Médula Espinal/patología , Linfocitos T/citología
10.
Nat Med ; 15(6): 626-32, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19483694

RESUMEN

We describe here the paradoxical development of spontaneous experimental autoimmune encephalomyelitis (EAE) in transgenic mice expressing a myelin oligodendrocyte glycoprotein (MOG)-specific T cell antigen receptor (TCR) in the absence of MOG. We report that in Mog-deficient mice (Mog-/-), the autoimmune response by transgenic T cells is redirected to a neuronal cytoskeletal self antigen, neurofilament-M (NF-M). Although components of radically different protein classes, the cross-reacting major histocompatibility complex I-Ab-restricted epitope sequences of MOG35-55 and NF-M18-30 share essential TCR contact positions. This pattern of cross-reaction is not specific to the transgenic TCR but is also commonly seen in MOG35-55-I-Ab-reactive T cells. We propose that in the C57BL/6 mouse, MOG and NF-M response components add up to overcome the general resistance of this strain to experimental induction of autoimmunity. Similar cumulative responses against more than one autoantigen may have a role in spontaneously developing human autoimmune diseases.


Asunto(s)
Autoantígenos/inmunología , Esclerosis Múltiple/inmunología , Vaina de Mielina/inmunología , Linfocitos T/inmunología , Secuencia de Aminoácidos , Animales , Reacciones Cruzadas , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Proteínas de la Mielina , Glicoproteína Asociada a Mielina/química , Glicoproteína Asociada a Mielina/deficiencia , Glicoproteína Asociada a Mielina/genética , Glicoproteína Asociada a Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Proteínas de Neurofilamentos/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA