Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(24): 11477-11484, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38084909

RESUMEN

Nanoparticles are promising tools for biomedicine. Many nanoparticles are internalized to function. Clathrin-mediated endocytosis is one of the most important mechanisms for nanoparticle internalization. However, the regulatory mechanism of clathrin-mediated nanoparticle endocytosis is still unclear. Here, we report that the adapter protein HIP-55 regulates clathrin-mediated nanoparticle endocytosis. CdSe/ZnS quantum dots (QDs), a typical nanoparticle, enter cells through the HIP-55-dependent clathrin endocytosis pathway. Both pharmacological inhibitor and genetic intervention demonstrate that QDs enter cells through clathrin-mediated endocytosis. HIP-55 can interact with clathrin and promote clathrin-mediated QDs endocytosis. Furthermore, HIP-55 ΔADF which is defective in F-actin binding fails to promote QDs endocytosis, indicating HIP-55 promotes clathrin-mediated QDs endocytosis depending on interaction with F-actin. In vivo, HIP-55 knockout also inhibits endocytosis of QDs. These findings reveal that HIP-55 acts as an intrinsic regulator for clathrin-mediated nanoparticle endocytosis, providing new insight into the nanoparticle internalization and a new strategy for nanodrug enrichment in target cells.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Clatrina/metabolismo , Actinas , Endocitosis
2.
J Mol Cell Cardiol ; 184: 48-60, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37813179

RESUMEN

Myocardial infarction and revascularization cause cardiac ischemia/reperfusion (I/R) injury featuring cardiomyocyte death and inflammation. The Ca2+/calmodulin dependent protein kinase II (CaMKII) family are serine/ threonine protein kinases that are involved in I/R injury. CaMKII exists in four different isoforms, α, ß, γ, and δ. In the heart, CaMKII-δ is the predominant isoform,with multiple splicing variants, such as δB, δC and δ9. During I/R, elevated intracellular Ca2+ concentrations and reactive oxygen species activate CaMKII. In this review, we summarized the regulation and function of CaMKII in multiple cell types including cardiomyocytes, endothelial cells, and macrophages during I/R. We conclude that CaMKII mediates inflammation in the microenvironment of the myocardium, resulting in cell dysfunction, elevated inflammation, and cell death. However, different CaMKII-δ variants exhibit distinct or even opposite functions. Therefore, reagents/approaches that selectively target specific CaMKII isoforms and variants are needed for evaluating and counteracting the exact role of CaMKII in I/R injury and developing effective treatments against I/R injury.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Humanos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Endoteliales/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/metabolismo , Isoformas de Proteínas/metabolismo
3.
Acta Pharmacol Sin ; 44(7): 1350-1365, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36737635

RESUMEN

Sympathetic stress is prevalent in cardiovascular diseases. Sympathetic overactivation under strong acute stresses triggers acute cardiovascular events including myocardial infarction (MI), sudden cardiac death, and stress cardiomyopathy. α1-ARs and ß-ARs, two dominant subtypes of adrenergic receptors in the heart, play a significant role in the physiological and pathologic regulation of these processes. However, little is known about the functional similarities and differences between α1- and ß-ARs activated temporal responses in stress-induced cardiac pathology. In this work, we systematically compared the cardiac temporal genome-wide profiles of acute α1-AR and ß-AR activation in the mice model by integrating transcriptome and proteome. We found that α1- and ß-AR activations induced sustained and transient inflammatory gene expression, respectively. Particularly, the overactivation of α1-AR but not ß-AR led to neutrophil infiltration at one day, which was closely associated with the up-regulation of chemokines, activation of NF-κB pathway, and sustained inflammatory response. Furthermore, there are more metabolic disorders under α1-AR overactivation compared with ß-AR overactivation. These findings provide a new therapeutic strategy that, besides using ß-blocker as soon as possible, blocking α1-AR within one day should also be considered in the treatment of acute stress-associated cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Receptores Adrenérgicos beta , Animales , Ratones , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Corazón , Arritmias Cardíacas , Inflamación/metabolismo , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo
4.
Hepatology ; 74(6): 3091-3109, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34320238

RESUMEN

BACKGROUND AND AIMS: NAFLD has become a tremendous burden for public health; however, there is no drug for NAFLD therapy at present. Impaired endo-lysosome-mediated protein degradation is observed in a variety of metabolic disorders, such as atherosclerosis, type 2 diabetes mellitus, and NAFLD. Small integral membrane protein of lysosome/late endosome (SIMPLE) is a regulator of endosome-to-lysosome trafficking and cell signaling, but the role that SIMPLE plays in NAFLD progression remains unknown. Here we investigated SIMPLE function in NAFLD development and sophisticated mechanism therein. APPROACH AND RESULTS: This study found that in vitro knockdown of SIMPLE significantly aggravated lipid accumulation and inflammation in hepatocytes treated with metabolic stimulation. Consistently, in vivo experiments showed that liver-specific Simple-knockout (Simple-HKO) mice exhibited more severe high-fat diet (HFD)-induced, high-fat-high-cholesterol diet (HFHC)-induced, and methionine-choline-deficient diet (MCD)-induced steatosis, glucose intolerance, inflammation, and fibrosis than those fed with normal chow (NC) diet. Meanwhile, RNA-sequencing demonstrated the up-regulated signaling pathways and signature genes involved in lipid metabolism, inflammation, and fibrosis in Simple-HKO mice compared with control mice under metabolic stress. Mechanically, we found SIMPLE directly interact with epidermal growth factor receptor (EGFR). SIMPLE deficiency results in dysregulated degradation of EGFR, subsequently hyperactivated EGFR phosphorylation, thus exaggerating NAFLD development. Moreover, we demonstrated that using EGFR inhibitor or silencing EGFR expression could ameliorate lipid accumulation induced by the knockdown of SIMPLE. CONCLUSIONS: SIMPLE ameliorated NASH by prompting EGFR degradation and can be a potential therapeutic candidate for NASH.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Receptores ErbB/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Biopsia , Células Cultivadas , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Dieta Alta en Grasa/efectos adversos , Receptores ErbB/antagonistas & inhibidores , Femenino , Técnicas de Silenciamiento del Gen , Hepatocitos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Hígado/patología , Lisosomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Nucleares/genética , Cultivo Primario de Células , Proteolisis , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
5.
Acta Pharmacol Sin ; 43(10): 2542-2549, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35354962

RESUMEN

Upon chronic stress, ß-adrenergic receptor activation induces cardiac fibrosis and leads to heart failure. The small molecule compound IMM-H007 has demonstrated protective effects in cardiovascular diseases via activation of AMP-activated protein kinase (AMPK). This study aimed to investigate IMM-H007 effects on cardiac fibrosis induced by ß-adrenergic receptor activation. Because adenosine analogs also exert AMPK-independent effects, we assessed AMPK-dependent and -independent IMM-H007 effects in murine models of cardiac fibrosis. Continual subcutaneous injection of isoprenaline for 7 days caused cardiac fibrosis and cardiac dysfunction in mice in vivo. IMM-H007 attenuated isoprenaline-induced cardiac fibrosis, diastolic dysfunction, α-smooth muscle actin expression, and collagen I deposition in both wild-type and AMPKα2-/- mice. Moreover, IMM-H007 inhibited transforming growth factor ß1 (TGFß1) expression in wild-type, but not AMPKα2-/- mice. By contrast, IMM-H007 inhibited Smad2/3 signaling downstream of TGFß1 in both wild-type and AMPKα2-/- mice. Surface plasmon resonance and molecular docking experiments showed that IMM-H007 directly interacts with TGFß1, inhibits its binding to TGFß type II receptors, and downregulates the Smad2/3 signaling pathway downstream of TGFß1. These findings suggest that IMM-H007 inhibits isoprenaline-induced cardiac fibrosis via both AMPKα2-dependent and -independent mechanisms. IMM-H007 may be useful as a novel TGFß1 antagonist.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Factor de Crecimiento Transformador beta1 , Proteínas Quinasas Activadas por AMP/metabolismo , Actinas/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Animales , Colágeno , Fibrosis , Isoproterenol/toxicidad , Ratones , Simulación del Acoplamiento Molecular , Receptores Adrenérgicos beta , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
6.
Acta Pharmacol Sin ; 43(5): 1243-1250, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34349235

RESUMEN

ß-Adrenergic receptor (ß-AR) overactivation is a major pathological factor associated with cardiac diseases and mediates cardiac inflammatory injury. Glibenclamide has shown anti-inflammatory effects in previous research. However, it is unclear whether and how glibenclamide can alleviate cardiac inflammatory injury induced by ß-AR overactivation. In the present study, male C57BL/6J mice were treated with or without the ß-AR agonist isoprenaline (ISO) with or without glibenclamide pretreatment. The results indicated that glibenclamide alleviated ISO-induced macrophage infiltration in the heart, as determined by Mac-3 staining. Consistent with this finding, glibenclamide also inhibited ISO-induced chemokines and proinflammatory cytokines expression in the heart. Moreover, glibenclamide inhibited ISO-induced cardiac fibrosis and dysfunction in mice. To reveal the protective mechanism of glibenclamide, the NLRP3 inflammasome was further analysed. ISO activated the NLRP3 inflammasome in both cardiomyocytes and mouse hearts, but this effect was alleviated by glibenclamide pretreatment. Furthermore, in cardiomyocytes, ISO increased the efflux of potassium and the generation of ROS, which are recognized as activators of the NLRP3 inflammasome. The ISO-induced increases in these processes were inhibited by glibenclamide pretreatment. Moreover, glibenclamide inhibited the cAMP/PKA signalling pathway, which is downstream of ß-AR, by increasing phosphodiesterase activity in mouse hearts and cardiomyocytes. In conclusion, glibenclamide alleviates ß-AR overactivation-induced cardiac inflammation by inhibiting the NLRP3 inflammasome. The underlying mechanism involves glibenclamide-mediated suppression of potassium efflux and ROS generation by inhibiting the cAMP/PKA pathway.


Asunto(s)
Inflamasomas , Receptores Adrenérgicos beta , Animales , Arritmias Cardíacas , Gliburida/farmacología , Inflamasomas/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Potasio/metabolismo , Potasio/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores Adrenérgicos beta/metabolismo
7.
Clin Infect Dis ; 71(15): 732-739, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32150618

RESUMEN

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in 2019 and subsequently spread worldwide. Chloroquine has been sporadically used in treating SARS-CoV-2 infection. Hydroxychloroquine shares the same mechanism of action as chloroquine, but its more tolerable safety profile makes it the preferred drug to treat malaria and autoimmune conditions. We propose that the immunomodulatory effect of hydroxychloroquine also may be useful in controlling the cytokine storm that occurs late phase in critically ill patients with SARS-CoV-2. Currently, there is no evidence to support the use of hydroxychloroquine in SARS-CoV-2 infection. METHODS: The pharmacological activity of chloroquine and hydroxychloroquine was tested using SARS-CoV-2-infected Vero cells. Physiologically based pharmacokinetic (PBPK) models were implemented for both drugs separately by integrating their in vitro data. Using the PBPK models, hydroxychloroquine concentrations in lung fluid were simulated under 5 different dosing regimens to explore the most effective regimen while considering the drug's safety profile. RESULTS: Hydroxychloroquine (EC50 = 0.72 µM) was found to be more potent than chloroquine (EC50 = 5.47 µM) in vitro. Based on PBPK models results, a loading dose of 400 mg twice daily of hydroxychloroquine sulfate given orally, followed by a maintenance dose of 200 mg given twice daily for 4 days is recommended for SARS-CoV-2 infection, as it reached 3 times the potency of chloroquine phosphate when given 500 mg twice daily 5 days in advance. CONCLUSIONS: Hydroxychloroquine was found to be more potent than chloroquine to inhibit SARS-CoV-2 in vitro.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Hidroxicloroquina/farmacología , Neumonía Viral/tratamiento farmacológico , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Animales , Antivirales/farmacocinética , COVID-19 , Línea Celular , Chlorocebus aethiops , Cloroquina/farmacocinética , Cloroquina/farmacología , Hidroxicloroquina/farmacocinética , Pulmón/efectos de los fármacos , Pandemias , SARS-CoV-2 , Células Vero , Tratamiento Farmacológico de COVID-19
8.
Biochem Biophys Res Commun ; 528(3): 561-566, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32505347

RESUMEN

Cardiac fibroblast (CF) differentiation plays a crucial role in cardiac fibrosis, which is a specific manifestation distinguishing pathological cardiac hypertrophy from physiological hypertrophy. The DNA-binding activity of paired box 6 (Pax6) has been shown to be oppositely regulated in physiological and pathological hypertrophy; however, it remains unclear whether Pax6 is involved in CF differentiation during cardiac fibrosis. We found that Pax6 is expressed in the heart of and CFs isolated from adult mice. Moreover, angiotensin II (Ang II) induced the downregulation of Pax6 mRNA and protein expression in fibrotic heart tissue and cardiac myofibroblasts. Pax6 knockdown in CFs promoted the expression of the myofibroblast marker α-smooth muscle actin (α-SMA) and the synthesis of the extracellular matrix (ECM) proteins collagen I and fibronectin. Furthermore, we validated the ability of Pax6 to bind to the promoter regions of Cxcl10 and Il1r2 and the intronic region of Tgfb1. Pax6 knockdown in CFs decreased CXC chemokine 10 (CXCL10) and interleukin-1 receptor 2 (IL-1R2) expression and increased transforming growth factor ß1 (TGFß1) expression, mimicking the effects of Ang II. In conclusion, Pax6 exerts an inhibitory effect on CF differentiation and ECM synthesis by transcriptionally activating the expression of the anti-fibrotic factors CXCL10 and IL-1R2 and repressing the expression of the pro-fibrotic factor TGFß1. Therefore, maintaining Pax6 expression in CFs is essential for preventing CF differentiation, and provides a new therapeutic target for cardiac fibrosis.


Asunto(s)
Diferenciación Celular/fisiología , Miocardio/citología , Miocardio/metabolismo , Factor de Transcripción PAX6/fisiología , Angiotensina II/farmacología , Animales , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Diferenciación Celular/genética , Quimiocina CXCL10/genética , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/biosíntesis , Fibroblastos/citología , Fibroblastos/metabolismo , Fibrosis , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Intrones , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción PAX6/antagonistas & inhibidores , Factor de Transcripción PAX6/genética , Regiones Promotoras Genéticas , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Receptores Tipo II de Interleucina-1/genética , Factor de Crecimiento Transformador beta1/genética
9.
Nephrol Dial Transplant ; 35(12): 2095-2102, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33275762

RESUMEN

BACKGROUND: Acute kidney injury (AKI) is an important complication of coronavirus disease 2019 (COVID-19), which could be caused by both systematic responses from multi-organ dysfunction and direct virus infection. While advanced evidence is needed regarding its clinical features and mechanisms. We aimed to describe two phenotypes of AKI as well as their risk factors and the association with mortality. METHODS: Consecutive hospitalized patients with COVID-19 in tertiary hospitals in Wuhan, China from 1 January 2020 to 23 March 2020 were included. Patients with AKI were classified as AKI-early and AKI-late according to the sequence of organ dysfunction (kidney as the first dysfunctional organ or not). Demographic and clinical features were compared between two AKI groups. Their risk factors and the associations with in-hospital mortality were analyzed. RESULTS: A total of 4020 cases with laboratory-confirmed COVID-19 were included and 285 (7.09%) of them were identified as AKI. Compared with patients with AKI-early, patients with AKI-late had significantly higher levels of systemic inflammatory markers. Both AKIs were associated with an increased risk of in-hospital mortality, with similar fully adjusted hazard ratios of 2.46 [95% confidence interval (CI) 1.35-4.49] for AKI-early and 3.09 (95% CI 2.17-4.40) for AKI-late. Only hypertension was independently associated with the risk of AKI-early. While age, history of chronic kidney disease and the levels of inflammatory biomarkers were associated with the risk of AKI-late. CONCLUSIONS: AKI among patients with COVID-19 has two clinical phenotypes, which could be due to different mechanisms. Considering the increased risk for mortality for both phenotypes, monitoring for AKI should be emphasized during COVID-19.


Asunto(s)
Lesión Renal Aguda/etiología , COVID-19/complicaciones , Lesión Renal Aguda/epidemiología , Adolescente , Adulto , Anciano , COVID-19/epidemiología , China/epidemiología , Femenino , Estudios de Seguimiento , Mortalidad Hospitalaria/tendencias , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , SARS-CoV-2 , Factores de Tiempo , Adulto Joven
10.
Mol Pharmacol ; 92(3): 188-192, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28404616

RESUMEN

Pharmacology is the science that investigates the interactions between organisms and drugs and their mechanisms. Pharmacology plays a translational role in modern medicine, bridging basic research and the clinic. With its economy booming, China has invested an enormous amount of financial and human resources in pharmacological research in the recent decade. As a result, major breakthroughs have been achieved in both basic and clinical research, with the discovery of many potential drug targets and biomarkers that has made a sizable contribution to the overall advancement of pharmacological sciences. In this article, we review recent research efforts and representative scientific achievements and discuss future challenges and directions for the pharmacological sciences in China.


Asunto(s)
Farmacología , Animales , China , Descubrimiento de Drogas , Humanos , Investigación
11.
Zhonghua Wai Ke Za Zhi ; 53(8): 622-7, 2015 Aug 01.
Artículo en Zh | MEDLINE | ID: mdl-26653965

RESUMEN

OBJECTIVE: To study the funding and achievements in the field of organ transplantation support by the National Natural Science Foundation of China (NSFC). METHODS: A search of NSFC database was made by using the key word "transplantation" and excluding "bone marrow transplantation" for the projects funded between 1988 and 2013. SCI indexed publications that marked with NSFC project number were collected by searching each grant number in the database of the Web of Science. RESULTS: Six hundreds fifty-five projects were identified and received about 220 million yuan in grant funding. These funded research projects were distributed among 25 provinces and autonomous regions, however, which were mainly in the developed coastal areas; of them, 43 (6.56%) projects were granted in xenotransplantation and 17 projects (2.60%) were funded in the field of traditional Chinese medicine-related organ transplantation; Transplantation on blood vessels, heart, kidney, liver, lung, small intestine, pancreatic, cornea, trachea, skin, etc. were primarily performed in research. Nine hundreds and sixty-one SCI-indexed publications were achieved. CONCLUSIONS: Magnitude and intensity of NSFC funding, output of SCI publications have been increasing, suggesting that NSFC positively promotes the development of organ transplantation. Although a great progress of transplantation has been made, basic and translational studies should be vigorously strengthened.


Asunto(s)
Investigación Biomédica/economía , Fundaciones , Trasplante , China , Apoyo Financiero , Humanos
14.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 33(11): 1557-60, 2013 Nov.
Artículo en Zh | MEDLINE | ID: mdl-24483120

RESUMEN

In recent years, projects funded by the Division V III of Health Sciences of the National Natural Science Foundation of China (NSFC) increased steadily, which enhanced the process of modernization of Chinese medicine (CM). We analyzed CM projects funded by NSFC during 2003 -2012, which aimed to provide reference to experts in the CM field.


Asunto(s)
Fundaciones , Medicina Tradicional China , China
15.
Front Cardiovasc Med ; 10: 1143583, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113698

RESUMEN

Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that can identify pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). TLRs play an important role in the innate immune response, leading to acute and chronic inflammation. Cardiac hypertrophy, an important cardiac remodeling phenotype during cardiovascular disease, contributes to the development of heart failure. In previous decades, many studies have reported that TLR-mediated inflammation was involved in the induction of myocardium hypertrophic remodeling, suggesting that targeting TLR signaling might be an effective strategy against pathological cardiac hypertrophy. Thus, it is necessary to study the mechanisms underlying TLR functions in cardiac hypertrophy. In this review, we summarized key findings of TLR signaling in cardiac hypertrophy.

16.
Sci China Life Sci ; 66(5): 1067-1078, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36449214

RESUMEN

Rapid over-activation of ß-adrenergic receptors (ß-AR) following acute stress initiates cardiac inflammation and injury by activating interleukin-18 (IL-18), however, the process of inflammation cascades has not been fully illustrated. The present study aimed to determine the mechanisms of cardiac inflammatory amplification following acute sympathetic activation. With bioinformatics analysis, galectin-3 was identified as a potential key downstream effector of ß-AR and IL-18 activation. The serum level of galectin-3 was positively correlated with norepinephrine or IL-18 in patients with chest pain. In the heart of mice treated with ß-AR agonist isoproterenol (ISO, 5 mg kg-1), galectin-3 expression was upregulated markedly later than IL-18 activation, and Nlrp3-/- and Il18-/- mice did not show ISO-induced galectin-3 upregulation. It was further revealed that cardiomyocyte-derived IL-18 induced galectin-3 expression in macrophages following ISO treatment. Moreover, galectin-3 deficiency suppressed ISO-induced cardiac inflammation and fibrosis without blocking ISO-induced IL-18 increase. Treatment with a galectin-3 inhibitor, but not a ß-blocker, one day after ISO treatment effectively attenuated cardiac inflammation and injury. In conclusion, galectin-3 is upregulated to exaggerate cardiac inflammation and injury following acute ß-AR activation, a galectin-3 inhibitor effectively blocks cardiac injury one day after ß-AR insult.


Asunto(s)
Galectina 3 , Interleucina-18 , Animales , Ratones , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/farmacología , Adrenérgicos/metabolismo , Adrenérgicos/farmacología , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Arritmias Cardíacas , Fibrosis , Inflamación/metabolismo
17.
Cardiovasc Res ; 119(1): 221-235, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35576474

RESUMEN

AIMS: Calcium-handling capacity is a major gauge of cardiomyocyte maturity. Ryanodine receptor 2 (RYR2) is the pre-dominant calcium channel that releases calcium from the sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) to activate cardiomyocyte contraction. Although RYR2 was previously implied as a key regulator of cardiomyocyte maturation, the mechanisms remain unclear. The aim of this study is to solve this problem. METHODS AND RESULTS: We performed Cas9/AAV9-mediated somatic mutagenesis to knockout RYR2 specifically in cardiomyocytes in mice. We conducted a genetic mosaic analysis to dissect the cell-autonomous function of RYR2 during cardiomyocyte maturation. We found that RYR2 depletion triggered ultrastructural and transcriptomic defects relevant to cardiomyocyte maturation. These phenotypes were associated with the drastic activation of ER stress pathways. The ER stress alleviator tauroursodeoxycholic acid partially rescued the defects in RYR2-depleted cardiomyocytes. Overexpression of ATF4, a key ER stress transcription factor, recapitulated defects in RYR2-depleted cells. Integrative analysis of RNA-Seq and bioChIP-Seq data revealed that protein biosynthesis-related genes are the major direct downstream targets of ATF4. CONCLUSION: RYR2-regulated ER homeostasis is essential for cardiomyocyte maturation. Severe ER stress perturbs cardiomyocyte maturation primarily through ATF4 activation. The major downstream effector genes of ATF4 are related to protein biosynthesis.


Asunto(s)
Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina , Animales , Ratones , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Respuesta de Proteína Desplegada , Señalización del Calcio
18.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106146

RESUMEN

Z-lines are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-line-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-line proteome in vivo. We found palmdelphin (PALMD) as a novel Z-line-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed transverse tubules (T-tubules) and their association with sarcoplasmic reticulum, which formed the Z-line-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with disrupted localization of T-tubule markers caveolin-3 (CAV3) and junctophilin-2 (JPH2) and the reduction of nexilin (NEXN) protein, a crucial Z-line-associated protein that is essential for both Z-line and JMC structures and functions. PALMD was found to interact with NEXN and enhance its protein stability while the Nexn mRNA level was not affected. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis. Highlights: In vivo proximity proteomics uncover novel Z-line components that are undetected in in vitro proximity proteomics in cardiomyocytes.PALMD is a novel Z-line-associated protein that is dispensable for baseline cardiomyocyte function in vivo.PALMD mitigates cardiac dysfunction and myocardial injury after repeated isoproterenol insults.PALMD stabilizes NEXN, an essential Z-line-associated regulator of the junctional membrane complex and cardiac systolic function.

19.
Neuron ; 111(22): 3634-3649.e7, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683629

RESUMEN

Blood-brain barrier (BBB) function deteriorates during aging, contributing to cognitive impairment and neurodegeneration. It is unclear what drives BBB leakage in aging and how it can be prevented. Using single-nucleus transcriptomics, we identified decreased connexin 43 (CX43) expression in cadherin-5+ (Cdh5+) cerebral vascular cells in naturally aging mice and confirmed it in human brain samples. Global or Cdh5+ cell-specific CX43 deletion in mice exacerbated BBB dysfunction during aging. The CX43-dependent effect was not due to its canonical gap junction function but was associated with reduced NAD+ levels and mitochondrial dysfunction through NAD+-dependent sirtuin 3 (SIRT3). CX43 interacts with and negatively regulates poly(ADP-ribose) polymerase 1 (PARP1). Pharmacologic inhibition of PARP1 by olaparib or nicotinamide mononucleotide (NMN) supplementation rescued NAD+ levels and alleviated aging-associated BBB leakage. These findings establish the endothelial CX43-PARP1-NAD+ pathway's role in vascular aging and identify a potential therapeutic strategy to combat aging-associated BBB leakage with neuroprotective implications.


Asunto(s)
Conexina 43 , NAD , Animales , Humanos , Ratones , Envejecimiento/fisiología , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo
20.
Zhonghua Yan Ke Za Zhi ; 48(2): 164-9, 2012 Feb.
Artículo en Zh | MEDLINE | ID: mdl-22490954

RESUMEN

OBJECTIVE: To analyze the role of National Natural Science Foundation of China (NSFC) on the development of the discipline of Ophthalmology from 1986 to 2010. METHODS: Data on the total number of projects and funding of NSFC allocated to Ophthalmology, as well as papers published, awards, personnel training, subject construction were collected, and the role of NSFC on other sources of funding was evaluated. RESULTS: From 1986 to 2010, NSFC supported a total of 593 scientific research projects of Ophthalmology, funding a total amount of 152.44 million Yuan, among which were 371 free application projects, 156 Young Scientist Funds, 9 Key Programs, 5 National Science Fund for Distinguished Young Scholars, 3 Major international (regional) joint research programs, 1 Science Fund for Creative Research Group and 48 other projects. Over the past 25 years, the number of NSFC projects received by Ophthalmology has been an overall upward trend in the share in the Department of Life (Health) Sciences. Take the projects (186 of 292, 63.7%) as examples completed between 2002 and 2010, a total 262 papers were published in Science Citation Index (SCI) included journals and 442 papers were published in Chinese journals. Meanwhile, 8 Second prizes of National Science and Technology Progress Award and 1 State Technological Invention Award were received. As of 2010, the training of a total of more than 40 postdoctoral, more than 400 doctoral students and more than 600 graduate students have been completed. 5 national key disciplines and 1 national key laboratory have been built. Moreover, 2 "973" programs from Ministry of Science and Technology and 1 project of special fund in the public interest from Ministry of Public Health were obtained. 2 scholars were among the list of Yangtze Fund Scholars granted by Ministry of Education. CONCLUSIONS: Over the past 25 years, a full range of continuous funding from NSFC has led to fruitful results and a strong impetus to the progress of discipline of Ophthalmology.


Asunto(s)
Apoyo Financiero , Fundaciones , Oftalmología , China , Organización de la Financiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA