Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 611
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(1): 210-217, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38037330

RESUMEN

Water plays a crucial role in various heterogeneous catalytic reactions, but the atomic-scale characterization of how water participates in these chemical processes remains a significant challenge. Here we directly visualize the promoting role of interfacial water in the deprotonation of formic acid (FA) on a metal surface, using combined scanning tunneling microscopy and qPlus-based noncontact atomic force microscopy. We find the dissociation of FA when coadsorbed with water on the Cu(111) surface, resulting in the formation of hydronium and formate ions. Interestingly, most of the hydrated proton and formate ions exhibit a phase-separated behavior on Cu(111), in which Eigen and Zundel cations assemble into a monolayer hexagonal hydrogen-bonding (H-bonding) network, and bidentate formate ions are solvated with water and aggregate into one-dimensional chains or two-dimensional H-bonding networks. This phase-separated behavior is essential for preventing the proton transfer back from hydronium to formate and the reformation of FA. Density functional theory calculations reveal that the participation of water significantly reduces the deprotonation barrier of FA on Cu(111), in which water catalyzes the decomposition of FA through the Grotthuss proton transfer mechanism. In addition, the separate solvation of hydronium and bidentate formate ions is energetically preferred due to the enhanced interaction with the copper substrate. The promoting role of water in the deprotonation of FA is further confirmed by the temperature-programmed desorption experiment, which shows that the intensity of the H2 desorption peak significantly increases and the desorption of FA declines when water and FA coadsorbed on the Cu(111) surface.

2.
Anal Chem ; 96(1): 437-445, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150621

RESUMEN

Damage of reactive oxygen species to various molecules such as DNA has been related to many chronic and degenerative human diseases, aging, and even cancer. 8-Oxo-7,8-dihydroguanine (OG), the most significant oxidation product of guanine (G), has become a biomarker of oxidative stress as well as gene regulation. The positive effect of OG in activating transcription and the negative effect in inducing mutation are a double-edged sword; thus, site-specific quantification is helpful to quickly reveal the functional mechanism of OG at hotspots. Due to the possible biological effects of OG at extremely low abundance in the genome, the monitoring of OG is vulnerable to signal interference from a large amount of G. Herein, based on rolling circle amplification-induced G-triplex formation and Thioflavin T fluorescence enhancement, an ultrasensitive strategy for locus-specific OG quantification was constructed. Owing to the difference in the hydrogen-bonding pattern between OG and G, the nonspecific background signal of G sites was completely suppressed through enzymatic ligation of DNA probes and the triggered specificity of rolling circle amplification. After the signal amplification strategy was optimized, the high detection sensitivity of OG sites with an ultralow detection limit of 0.18 amol was achieved. Under the interference of G sites, as little as 0.05% of OG-containing DNA was first distinguished. This method was further used for qualitative and quantitative monitoring of locus-specific OG in genomic DNA under oxidative stress and identification of key OG sites with biological function.


Asunto(s)
ADN , Guanina , Humanos , ADN/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno , Técnicas de Amplificación de Ácido Nucleico
3.
Anal Chem ; 96(21): 8458-8466, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38710075

RESUMEN

G-triplexes are G-rich oligonucleotides composed of three G-tracts and have absorbed much attention due to their potential biological functions and attractive performance in biosensing. Through the optimization of loop compositions, DNA lengths, and 5'-flanking bases of G-rich sequences, a new stable G-triplex sequence with 14 bases (G3-F15) was discovered to dramatically activate the fluorescence of Thioflavin T (ThT), a water-soluble fluorogenic dye. The fluorescence enhancement of ThT after binding with G3-F15 reached 3200 times, which was the strongest one by far among all of the G-rich sequences. The conformations of G3-F15 and G3-F15/ThT were studied by circular dichroism. The thermal stability measurements indicated that G3-F15 was a highly stable G-triplex structure. The conformations of G3-F15 and G3-F15/ThT in the presence of different metal cations were studied thoroughly by fluorescent spectroscopy, circular dichroism, and nuclear magnetic resonance. Furthermore, using the G3-F15/ThT complex as a fluorescent probe, a robust and simple turn-on fluorescent sensor for uracil-DNA glycosylase activity was developed. This study proposes a new systematic strategy to explore new functional G-rich sequences and their ligands, which will promote their applications in diagnosis, therapy, and biosensing.


Asunto(s)
Benzotiazoles , ADN , Fluorescencia , Uracil-ADN Glicosidasa , Humanos , Benzotiazoles/química , Benzotiazoles/metabolismo , Técnicas Biosensibles/métodos , Dicroismo Circular , ADN/química , ADN/metabolismo , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia , Uracil-ADN Glicosidasa/metabolismo , Uracil-ADN Glicosidasa/química
4.
J Org Chem ; 89(2): 975-985, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38181067

RESUMEN

Enantioselective synthesis of eight-membered N-heterocycles represents a long-standing challenge in organic synthesis. Here, by combining the squaramide and DBU catalysis, a sequential asymmetric conjugate addition/cyclization reaction between benzofuran-derived azadienes and ynones has been well-developed, providing straightforward access to chiral eight-membered N-heterocycles in high yields with stereoselectivities. This protocol features the use of a bifunctional squaramide catalyst for controlling the enantioselectivity of products, while the DBU is utilized to achieve intramolecular cyclization and improve the diastereoselectivity of products.

5.
Acta Pharmacol Sin ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902501

RESUMEN

The impairment of blood-brain barrier (BBB) integrity is the pathological basis of hemorrhage transformation and vasogenic edema following thrombolysis and endovascular therapy. There is no approved drug in the clinic to reduce BBB damage after acute ischemic stroke (AIS). Glial growth factor 2 (GGF2), a recombinant version of neuregulin-1ß that can stimulates glial cell proliferation and differentiation, has been shown to alleviate free radical release from activated microglial cells. We previously found that activated microglia and proinflammatory factors could disrupt BBB after AIS. In this study we investigated the effects of GGF2 on AIS-induced BBB damage as well as the underlying mechanisms. Mouse middle cerebral artery occlusion model was established: mice received a 90-min ischemia and 22.5 h reperfusion (I/R), and were treated with GGF2 (2.5, 12.5, 50 ng/kg, i.v.) before the reperfusion. We showed that GGF2 treatment dose-dependently decreased I/R-induced BBB damage detected by Evans blue (EB) and immunoglobulin G (IgG) leakage, and tight junction protein occludin degradation. In addition, we found that GGF2 dose-dependently reversed AIS-induced upregulation of vesicular transcytosis increase, caveolin-1 (Cav-1) as well as downregulation of major facilitator superfamily domain containing 2a (Mfsd2a). Moreover, GGF2 decreased I/R-induced upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that played an important role in BBB damage after AIS. In addition, GGF2 significantly alleviated I/R-induced reduction of YAP and TAZ, microglial cell activation and upregulation of inflammatory factors. Together, these results demonstrate that GGF2 treatment alleviates the I/R-compromised integrity of BBB by inhibiting Mfsd2a/Cav-1-mediated transcellular permeability and Pdlim5/YAP/TAZ-mediated paracellular permeability.

6.
Arch Insect Biochem Physiol ; 116(3): e22136, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39016052

RESUMEN

H2A.Z, the most evolutionarily conserved variant of histone H2A, plays a pivotal role in chromatin remodeling and contributes significantly to gene transcription and genome stability. However, the role of H2A.Z in the silkworm (Bombyx mori) remains unclear. In this study, we cloned the BmH2A.Z from B. mori. The open reading frame of BmH2A.Z is 390 bp, encoding 129 amino acids, with a confirmed molecular weight of 13.4 kDa through prokaryotic expression analysis. Sequence analysis revealed that BmH2A.Z has a conserved H2A.Z domain and is closely related to the systemic evolution of other known H2A.Zs. The expression profile of BmH2A.Z at various developmental stages of the B. mori exhibited the highest expression level in the 1st instar, followed by the grain stage and the 2nd instar, and the lowest expression level in the moth. The highest transcript level of BmH2A.Z was observed in the head, with relatively lower levels detected in the blood than in the other tissues under consideration. In addition, the upregulation of BmH2A.Z resulted in the amplified expression of B. mori nucleopolyhedrovirus (BmNPV) genes, thus facilitating the proliferation of BmNPV. This study establishes a foundation for investigating the role of BmH2A.Z in B. mori and its participation in virus-host interactions.


Asunto(s)
Secuencia de Aminoácidos , Bombyx , Clonación Molecular , Histonas , Proteínas de Insectos , Animales , Bombyx/genética , Bombyx/metabolismo , Bombyx/virología , Histonas/metabolismo , Histonas/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/genética , Larva/metabolismo , Larva/crecimiento & desarrollo , Filogenia , Nucleopoliedrovirus/genética , Alineación de Secuencia
7.
World J Surg ; 48(2): 446-455, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38686786

RESUMEN

BACKGROUND: The diseased bile duct in bilobar congenital biliary dilatation is extensive and often requires major hepatectomy or liver transplantation associated with a higher risk. We aimed to evaluate the safety and benefit of modified mesohepatectomy, in comparison with trisectionectomy, to treat bilobar congenital biliary dilatation. METHODS: This study included 28 patients with type IV and V bilobar congenital biliary dilatation. An innovative mesohepatectomy comprising the hepatectomy technique beyond the P/U point and bile duct shaping was applied to 14 patients to address the extensively diseased bile duct and difficulty in hepaticojejunostomy. Another 14 patients received trisectionectomy. The perioperative and long-term outcomes of these patients were compared. RESULTS: The ratio of residual liver volume to standard liver volume in the mesohepatectomy group was higher (78.68% vs. 40.90%, p = 0.005), while the resection rate of the liver parenchyma was lower (28.25% vs. 63.97%, p = 0.000), than that in trisectionectomy group. The mesohepatectomy group had a lower severe complication (>Clavein III, 0% vs. 57.70%, p = 0.019) and incidence of posthepatectomy liver failure (7.14% vs. 42.86%, p = 0.038). No significant difference was observed in blood loss and bile leakage (p > 0.05). All the patients in the mesohepatectomy group achieved optimal results in the long-term follow-up. CONCLUSIONS: mesohepatectomy provides an efficient treatment option for bilobar congenital biliary dilatation and can achieve radical resection, retain more liver parenchyma, and reduce the difficulty of hepaticojejunostomy, especially for patients that are not eligible for major hepatectomy and liver transplantation.


Asunto(s)
Hepatectomía , Humanos , Hepatectomía/métodos , Masculino , Femenino , Resultado del Tratamiento , Estudios Retrospectivos , Dilatación Patológica/cirugía , Lactante , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Preescolar
8.
Mol Divers ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811449

RESUMEN

The increasing resistance of Candida albicans against the currently available antifungal drugs has exerted enormous damage to human health. To develop novel and efficient antifungal agents with unique structure, a series of derivatives containing 5-nitrofuran scaffold (33 examples) were designed, synthesized, and screened the in vitro antifungal activities. Bioassay results disclosed that 5-nitrofuran derivatives could dramatically inhibit the growth of six strains of Candida albicans, particularly the drug-resistant clinical ones. There were ten kinds of compounds exhibited stronger inhibitory activities against tested fungi than those of fluconazole. For all tested fungi, B5 showed the highest activity with the MIC80 values of 0.25-8 µg/mL. The results of cytotoxicity assay displayed that B5 hardly influenced the growth of HL-7702 cell lines, consequently, it was safe for people and animals. The preliminary exploration of antifungal mechanism documented that B5 could destroy the morphology of tested fungi, facilitate the formation of reactive oxygen species, ultimately inhibited the proliferation of the tested fungi. In conclusion, a new and safe lead compound was successfully developed for the treatment of Candida albicans infection.

9.
J Nanobiotechnology ; 22(1): 579, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304913

RESUMEN

The high incidence and mortality rates associated with acute and chronic wound infections impose a significant burden on global healthcare systems. In terms of the management of wound infection, the reconstruction and regeneration of skin appendages are essential for the recovery of mechanical strength and physiological function in the regenerated skin tissue. Novel therapeutic approaches are a requisite for enhancing the healing of infected wounds and promoting the regeneration of skin appendages. Herein, a novel antimicrobial microneedle patch has been fabricated for the transdermal controlled delivery of adipose tissue-derived apoptotic vesicles (ApoEVs-AT@MNP) for the treatment of infected wounds, which is expected to achieve high-quality scarless healing of the wound skin while inhibiting the bacteria in the infected wound. The microneedle patch (MNP) system possesses adequate mechanical strength to penetrate the skin, allowing the tips to remain inside tissue for continuous active release of biomolecules, and subsequently degrades safely within the host body. In vivo transplantation demonstrates that ApoEVs-AT@MNP not only inhibits bacterial proliferation in infected wounds but also significantly promotes effective and rapid scarless wound healing. Particularly noteworthy is the ability of ApoEVs-AT@MNP to promote the rapid formation of mature, evenly arranged hair follicles in infected wounds, observed as early as 8 days following implantation, which is essential for the restoration of skin function. This rapid development of skin appendages has not been reported this early in previous studies. Therefore, ApoEVs-AT@MNP has emerged as an excellent, painless, non-invasive, and highly promising treatment for infected wounds.


Asunto(s)
Tejido Adiposo , Apoptosis , Agujas , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Tejido Adiposo/citología , Ratones , Apoptosis/efectos de los fármacos , Piel/efectos de los fármacos , Masculino , Antibacterianos/farmacología , Antibacterianos/química , Vesículas Extracelulares/química , Infección de Heridas/tratamiento farmacológico , Antiinfecciosos/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Ratones Endogámicos BALB C
10.
Oral Dis ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923332

RESUMEN

OBJECTIVES: Porphyromonas gingivalis-LPS regulated bone metabolism by triggering dysfunction of osteoblasts directly, and affecting activity of osteoclasts through intracellular communication. Exosome, as the mediator of intercellular communication, was important vesicle to regulate osteogenesis and osteoclastogenesis. This research was designed for investigating the mechanism of BMSCs-EXO in modulating osteoclastic activity under the P. gingivalis-LPS. MATERIALS AND METHODS: The cytotoxicity and osteogenic effects of P. gingivalis-LPS on BMSCs was evaluated, and then osteoclastic activity of RAW264.7 co-cultured with exosomes was detected. Besides, Affymetrix miRNA array and luciferase reporter assay were used to identify the target exosomal miRNA signal pathway. RESULTS: BMSCs' osteogenic differentiation and proliferation were decreased under 1 and 10 µg/mL P. gingivalis-LPS. Osteoclastic-related genes and proteins levels were promoted by P. gingivalis-LPS-stimulated BMSCs-EXO. Based on the miRNA microarray analysis, exosomal miR-151-3p was lessened in BMExo-LPS group, which facilitated osteoclastic differentiation through miR-151-3p/PAFAH1B1. CONCLUSIONS: Porphyromonas gingivalis-LPS could regulated bone metabolism by inhibiting proliferation and osteogenesis of BMSCs directly. Also, P. gingivalis-LPS-stimulated BMSCs-EXO promoted osteoclastogenesis via activating miR-151-3p/PAFAH1B1 signal pathway.

11.
BMC Anesthesiol ; 24(1): 212, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918712

RESUMEN

BACKGROUND: 3% chloroprocaine (CP) has been reported as the common local anesthetic used in pregnant women undergoing urgent cesarean delivery during labor analgesia period. However, 0.75% ropivacaine is considered a promising and effective alternative. Therefore, we conducted a randomized controlled trial to compare the effectiveness and safety of 0.75% ropivacaine with 3% chloroprocaine for extended epidural anesthesia in pregnant women. METHODS: We conducted a double-blind, randomized, controlled, single-center study from November 1, 2022, to April 30, 2023. We selected forty-five pregnant women undergoing urgent cesarean delivery during labor analgesia period and randomized them to receive either 0.75% ropivacaine or 3% chloroprocaine in a 1:1 ratio. The primary outcome was the time to loss of cold sensation at the T4 level. RESULTS: There was a significant difference between the two groups in the time to achieve loss of cold sensation (303, 95%CI 255 to 402 S vs. 372, 95%CI 297 to 630 S, p = 0.024). There was no significant difference the degree of motor block (p = 0.185) at the Th4 level. Fewer pregnant women required additional local anesthetics in the ropivacaine group compared to the chloroprocaine group (4.5% VS. 34.8%, p = 0.011). The ropivacaine group had lower intraoperative VAS scores (p = 0.023) and higher patient satisfaction scores (p = 0.040) than the chloroprocaine group. The incidence of intraoperative complications was similar between the two groups, and no serious complications were observed. CONCLUSIONS: Our study found that 0.75% ropivacaine was associated with less intraoperative pain treatment, higher patient satisfaction and reduced the onset time compared to 3% chloroprocaine in pregnant women undergoing urgent cesarean delivery during labor analgesia period. Therefore, 0.75% ropivacaine may be a suitable drug in pregnant women undergoing urgent cesarean delivery during labor analgesia period. CLINICAL TRIAL NUMBER AND REGISTRY URL: The registration number: ChiCTR2200065201; http://www.chictr.org.cn , Principal investigator: MEN, Date of registration: 31/10/2022.


Asunto(s)
Analgesia Obstétrica , Anestésicos Locales , Cesárea , Procaína , Ropivacaína , Humanos , Femenino , Ropivacaína/administración & dosificación , Embarazo , Método Doble Ciego , Cesárea/métodos , Anestésicos Locales/administración & dosificación , Adulto , Analgesia Obstétrica/métodos , Procaína/análogos & derivados , Procaína/administración & dosificación
12.
Drug Resist Updat ; 66: 100907, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36527888

RESUMEN

The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Receptor de Muerte Celular Programada 1 , Humanos , Antígeno B7-H1 , Resistencia a Medicamentos , Inmunoterapia , Microambiente Tumoral
13.
Biochem Genet ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833082

RESUMEN

Targeting protein for Xenopus kinesin-like protein 2 (TPX2), a well-known mitotic protein, has been linked to carcinogenesis in several cancers. This study investigated the role of TPX2 in hepatocellular carcinoma (HCC) from various aspects using bioinformatic analyses. TPX2 expression and its prognostic value in pan-cancers were analyzed using SangerBox. TPX2 expression and its association with prognosis, immune infiltration, tumor mutations, and signaling pathways in HCC were analyzed using UALCAN, BoxKaplan-Meier Plotter, GEPIA, Human Protein Atlas, TIMER 2.0, and SangerBox. Genes co-expressed with TPX2 in HCC were analyzed using the HCCDB database, followed by functional enrichment using SangerBox. Clinical predictive models were established based on TPX2 and its co-expressed genes using the ACLBI database. TPX2 expression significantly increased in pan-cancers and was associated with survival in nearly half of the cancer types. High TPX2 expression has been linked to poor survival outcomes in patients with HCC. TPX2 expression was positively correlated with abundant infiltration of immune cells (including B cells, CD4 + /CD8 + T cells, macrophages, neutrophils, and dendritic cells), TP53 mutation, and carcinogenesis-related pathways, such as the PI3K/AKT/mTOR pathway, cellular response to hypoxia, and tumor proliferation signature. Nineteen genes were found to be co-expressed with TPX2 in HCC, and these genes showed close positive correlations and were mainly implicated in cell cycle-related functions. A prognostic model established using TPX2 and its expressed genes could stratify HCC patients into high- and low-risk groups, with a significantly shorter survival time in high-risk groups. The prognostic model performed well in predicting 1-, 3-, and 5-year survival of patients with HCC, with areas under the curve of 0.801, 0.725, and 0.711, respectively. TPX2 functions as an oncogene in HCC, and its high expression is detrimental to the survival of patients with HCC. Thus, TPX2 may be a prognostic biomarker and potential therapeutic target for HCC.

14.
J Med Internet Res ; 26: e63367, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39238480

RESUMEN

BACKGROUND: As the global population ages, we witness a broad scientific and technological revolution tailored to meet the health challenges of older adults. Over the past 25 years, technological innovations, ranging from advanced medical devices to user-friendly mobile apps, are transforming the way we address these challenges, offering new avenues to enhance the quality of life and well-being of the aging demographic. OBJECTIVE: This study aimed to systematically review the development trends in technology for managing and caring for the health of older adults over the past 25 years and to project future development prospects. METHODS: We conducted a comprehensive bibliometric analysis of literatures related to technology-based solutions for health challenges in aging, published up to March 18, 2024. The search was performed using the Web of Science Core Collection, covering a span from 1999 to 2024. Our search strategy was designed to capture a broad spectrum of terms associated with aging, health challenges specific to older adults, and technological interventions. RESULTS: A total of 1133 publications were found in the Web of Science Core Collection. The publication trend over these 25 years showed a gradual but fluctuating increase. The United States was the most productive country and participated in international collaboration most frequently. The predominant keywords identified through this analysis included "dementia," "telemedicine," "older-adults," "telehealth," and "care." The keywords with citation bursts included "telemedicine" and "digital health." CONCLUSIONS: The scientific and technological revolution has significantly improved older adult health management, particularly in chronic disease monitoring, mobility, and social connectivity. The momentum for innovation continues to build, with future research likely to focus on predictive analytics and personalized health care solutions, further enhancing older adults' independence and quality of life.


Asunto(s)
Envejecimiento , Bibliometría , Humanos , Anciano , Calidad de Vida , Telemedicina/tendencias , Telemedicina/estadística & datos numéricos
15.
Plant Dis ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172526

RESUMEN

Tomato zonate spot virus (TZSV, Orthotospovirus tomatozonae, genus Orthotospovirus, family Tospoviridae) was first reported to infect tomato (Solanum lycopersicum) in China in 2008 (Dong et al. 2008). Belamcanda chinensis (L.) Redouté is a perennial herbaceous medicinal plant of the family Iridaceae, which is widely distributed in China. Its rhizome contains abundant active components, mainly including flavonoids, and has antibacterial, anticancer, and antioxidative effects. In July 2023, four B. chinensis plants with virus-like symptoms were collected in Fuyuan County, Yunnan Province in China. The diseased leaves showed chlorosis and ringspots (Fig. S1). Spherical virus particles with a diameter of 80-100 nm were observed in the saps of diseased leaves under a transmission electron microscope (Fig. S2). The presence of an orthotospovirus was confirmed by the previously reported method to amplify the partial sequence (312 nt) of L segment (Huang et al. 2018) (Fig. S3). BLASTn analysis showed that the obtained 312-nt sequence was 95.62% nucleotide identity with TZSV tomato-YN isolate (accession no. NC_010491.1). To obtain the complete genome of this isolate, total RNA from symptomatic leaves of two single diseased B. chinensis were extracted using Hipure Universal RNA Mini Kit (Magen Biotech) and subjected to high-throughput sequencing with a NovaPE150 (Illumina, USA) at MAGIGENE (Shenzhen, China). A total of 41,144,571 clean reads were obtained after removing low quality reads. Quality-controlled, qualified reads were assembled into contigs using Megahit v1.1.2 software. Thirteen contigs shared nucleotide identity ranging 86.94%-97.73% with the L, S, and M segments of TZSV using BLASTn searches online (https://blast.ncbi.nlm.nih.gov/Blast.cgi). In addition, no contigs were mapped to other viral (taxid:10239) and viroidal (taxid:12884) sequences in GenBank Databases. The full-length L, M, and S RNA segments of TZSV-Bc isolate was determined tbe 8917 nt (PP314222), 4718 nt (PP314223) and 3213 nt (PP314224), respectively. These segments were validated by RT-PCR, and Sanger sequencing. They shared nucleotide sequence identities of 95.9%, 97.2%, and 93.1% of the L (NC_010491.1), M (NC_010490.1), and S (NC_010489.1) segments, of the TZSV tomato-YN isolate, respectively. Compared to the TZSV tomato-YN isolate, there exists a missing segment with 113 nt in the intergenic region of S RNA and a segment with 199 nt in M RNA. To further confirm the TZSV infection on B. chinensis, three primers pairs Tosp10/ Tosp11, Tosp5/Tosp6, and NSs-F/NSs-R were tested by RT-PCR for TZSV based on the previous report (Dong et al, 2008). The sequences of amplicons shared >99% nucleotide identity with the corresponding TZSV-Bc isolate sequences. Total of 14 B. chinensis samples were detected with the primer pair N-F/N-R (5'-ATGTCTAACGTCCGGAGTTTAACA-3'/ 5'-AAAAGACAGATCATTGCTGCTCTT-3') by One Step RT-PCR, 6 samples (42.85%) showed the positive results. The mechanical inoculation and RT-PCR detection confirmed TZSV-Bc isolate can infect N. bethamiana. So far, tomato zonate spot virus has been detected in different plants including tobacco (N. tabacum) (Huang et al. 2017), sticktight (Bidens pilosa) (Xu et al. 2022), pepper (Capsicum annuum) (Li et al. 2023) in China. To our knowledge, it is the first report of TZSV naturally infecting B. chinensis plants, which enriches information on the host range of TZSV and will be helpful for disease management.

16.
Plant Dis ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154200

RESUMEN

Angelica sinensis (Oliv.) Diels, is a perennial herbaceous plant of the Umbelliferae family. It has a long history of cultivation and is highly valued as a traditional Chinese medicine in China (Zhang et al. 2012). In September 2023, leaf blight on A. sinensis with an average disease incidence of 56% was recorded in an approximately 6.7-ha production field in Lijiang, Yunnan province, China (26.8215°N, 100.2369°E). At first, small, chlorotic lesions appeared on the leaves. They subsequently increased in density and gradually merged, causing leaves to yellow and wither. Ultimately the blight casused death of the entire foliage. In order to identify the causal agent, cross-sectional segments (5×5 mm2) were cut from the edge of leaf lesions, surface disinfected with a 1% sodium hypochlorite solution for 3 min and rinsed three times with sterile distilled water. They were subsequently placed on potato dextrose agar (PDA) plates and incubated for 3 days under a 12-h photoperiod at 28℃. A total of ten isolates with similar morphological characteristics were obtained by single spore isolation. After 10 days of incubation on PDA, the colony morphology of these isolates was characterized by a brownish central area with a white edge. Aged colonies became wrinkled in the center of the colony. Conidia (n = 30) were elliptical and brown, with a size range of 4.11 to 6.55 µm (average 5.37±0.74 µm) × 3.17 to 4.62 µm (average 3.92±0.43 µm). Chlamydospores (n = 30) formed chains in series, spherical or elliptical in shape, ranging from yellow-brown to dark brown, with a size range of 12.30 to 13.70 µm (average 12.98±0.46 µm) × 4.20 to 5.30 µm (average 4.63±0.26 µm). The nuclear ribosomal internal transcribed spacer region (ITS), the second largest subunit of RNA polymerase II (RPB2), and the 28S nuclear ribosomal large subunit rRNA (LSU) region of two isolates were amplified with the primer pairs ITS1/ITS4 (White et al. 1990), fRPB2-5F/fRPB2-7cR (Liu et al. 1999), and LR0R/LR5 (Schoch et al. 2012), respectively. These amplicons were sequenced bidirectionally and assembled. The two isolates produced the same nucleotide sequences, and the sequences of a representative isolate (AsDp1) were deposited in GenBank. BLASTn analyses showed that the ITS (PP510616), RPB2 (PP526010), and LSU (PP550143) sequences of isolate AsDp1 were 100%, 99.66%, and 100% identical with those of Didymella pomorum ex-type isolate CBS 354.52 (MH857081, KT389616, and MH868616), respectively. A phylogenetic tree was constructed based on the ITS, RPB2, and LSU concatenated nucleotide sequences using the maximum likelihood method in MEGAX. Isolate AsDp1 was clustered with four D. pomorum isolates. According to the morphological and nucleotide sequences analyses, isolate AsDp1 was identified as D. pomorum (Chen et al. 2015). To determine pathogenicity, 1-year-old A. sinensis plants (approximately 20 cm tall) grown in 7-liter pots filled with sterilized field soil were sprayed until runoff with a 1×106 conidia/ml suspension of isolate AsDp1 onto the foliage, while control plants were sprayed with sterile water. All plants were cultivated under a 12-h photoperiod at 25℃. The pathogenicity tests were performed in triplicate with ten plants in each treatment. After fifteen days, numerous chlorotic lesions appeared on the leaves of all inoculated plants. The symptoms were similar to those found on naturally infected plants in the field, while the control plants remained asymptomatic. Subsequently, D. pomorum was reisolated from the diseased leaves, and the identity was confirmed based on its ITS sequence and morphological characteristics. D. pomorum causing stem canker on Rosa spp. was reported in Canada (Ilyukhin 2022). To our knowledge, this is the first report of D. pomorum causing leaf blight on A. sinensis in China. This etiological finding will potentially pave the way for the development of control strategies of this disease.

17.
Plant Dis ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803070

RESUMEN

Polygonatum kingianum is a Chinese herbal medicine that belongs to the genus Polygonatum of the family Liliaceae. In June 2023, Polygonatum kingianum Coll. et Hemsl. in nurseries in Qujing, Yunnan Province, China, showed irregular brown spots on the leaves, whole leaf necrosis, and plant death in serious cases, with an incidence of 10-20% (Fig. S1). To identify the pathogens of P. kingianum, six diseased samples were collected from nurseries with 0.6 acre. These diseased sample leaves were soaked in 0.1% HgCl2 for 1 min and 75% ethanol for 2 min and then rinsed thrice with sterile water. Treated leaves were cut into small pieces (5×5 mm) and cultured on potato dextrose agar (PDA) for five days at 28°C. Total thirteen fungal strains were isolated from PDA medium. The nuclear ribosomal internal transcribed spacer of ribosomal DNA (ITS rDNA) region of these 13 strains was amplified by polymerase chain reaction (PCR) using universal primers ITSI/ITS4 (White et al. 1990). Sequencing and BLAST of the ITS region on NCBI showed that 11 out of 13 fungal strains belonged to the genus Alternaria, with an identity ≥99%. We selected one of the Alternaria strains, HJ-A1, for further study. The HJ-A1 colony appeared grayish brown white-to-gray with a flocculent texture on the front side and a dark gray underside on the PDA medium (Fig. S1). The conidiophores appeared brown, either single or branched, and produced numerous short conidial chains. The conidia were obclavate to obpyriform or ellipsoid in shape and contained 1-4 transverse septa and 0-2 oblique septa. The conidial diameter was 27.30µm in length and 12.27µm in width. (Fig. S1). To further determine the species of HJA1, the genomic DNA of HJ-A1 was extracted using the Lysis Buffer for PCR (AG, Hunan, China). Four Alternaria genomic DNA regions including the ITS, translation elongation factor 1-α gene (TEF1-α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and Alternaria major allergen gene (Alt a1) were amplified by PCR using the primers as previously reported (Woudenberg et al. 2013, Hong et al. 2005). Sequence analysis revealed that the ITS (484bp) of HJ-A1 (NCBI No. PP082633), TEF1-α (267bp) of HJ-A1 (NCBI No. PP419893), GAPDH (582bp) of HJ-A1 (NCBI No. PP419892), and Alt a1 (522bp) of HJ-A1 (NCBI No. PP228046) shared the highest identity with A. alternata respectively (99≥%). A maximum likelihood phylogenetic tree was constructed with the combined sequence data sets of ITS, GAPDH, TEF, and Alt a1 using MEGA 7. The results showed that HJ-A1 strain clustered with A. alternate (Fig. S2). The pathogenicity of HJ-A1 was tested according to Koch's postulates by inoculating HJ-A1 conidia suspension (2×105 conidia/mL) into leaves of 1-year-old P. kingianum, with sterile water as a control. Each treatment group included 3 plants with 3 replicates. The tested plants were planted in a phytotron at 28℃ and 90% humidity. Three days after inoculation, symptoms similar to those under natural conditions were observed in the HJ-A1-inoculated plants, whereas no symptoms were observed in the control plants (Fig. S1). The same fungal strains were re-isolated from inoculated leaves and identified by morphologically and sequence of ITS. Previous studies showed that Alternaria alternata funji cause many plant diseases, such as fig fruit rot (Latinovic N et al. 2014),daylily leaf spot (Huang D et al. 2022), fruit blight on sesame (Cheng H et al. 2021),leaf spot of Cynanchum atratum Bunge (Sun H et al. 2021) and so on. To our knowledge, this is the first report of A. alternata causing P. kingianum leaf spot in China. The discovery of this pathogen will help to guide the protection and control of P. kingianum disease.

18.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542356

RESUMEN

Nucleic acid modifications play important roles in biological activities and disease occurrences, and have been considered as cancer biomarkers. Due to the relatively low amount of nucleic acid modifications in biological samples, it is necessary to develop sensitive and reliable qualitative and quantitative methods to reveal the content of any modifications. In this review, the key processes affecting the qualitative and quantitative analyses are discussed, such as sample digestion, nucleoside extraction, chemical labeling, chromatographic separation, mass spectrometry detection, and data processing. The improvement of the detection sensitivity and specificity of analytical methods based on mass spectrometry makes it possible to study low-abundance modifications and their biological functions. Some typical nucleic acid modifications and their potential as biomarkers are displayed, and efforts to improve diagnostic accuracy are discussed. Future perspectives are raised for this research field.


Asunto(s)
Ácidos Nucleicos , Espectrometría de Masas/métodos , Biomarcadores de Tumor
19.
Rev Esp Enferm Dig ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087670

RESUMEN

Pancreatic fistula is a very difficult complication after pancreatic surgery(1). Endoscopic ultrasound guided drainage of pancreatic duct (EUS-PD)was a challenging endoscopic procedure that can solve the problem of postoperative pancreatic fistula. However, EUS-PD cannot be completed in patients with undilated pancreatic ducts. Here, we present a case of fistula-digestive anastomosis in the treatment of postoperative pancreatic fistula.

20.
J Transl Med ; 21(1): 21, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635690

RESUMEN

BACKGROUND: Growth arrest-specific 6 (GAS6) is a vitamin K-dependent protein related to inflammation, fibrosis, as well as platelet function. Genetic ablation of GAS6 in mice protects against cardiac hypertrophy and dysfunction. Nonetheless, the association between plasma GAS6 levels and acute heart failure (AHF) patients is still unknown. METHODS: We measured plasma GAS6 concentrations in 1039 patients with AHF who were enrolled in the DRAGON-HF trial (NCT03727828). Mean follow-up of the study was 889 days. The primary endpoint is all-cause death. RESULTS: In total, there were 195 primary endpoints of all-cause death and 135 secondary endpoints of cardiovascular death during the mean follow-up duration of 889 days. The higher levels of GAS6 were associated with higher rates of all-cause and cardiovascular death (P < 0.05). Baseline plasma GAS6 levels were still strongly correlated with clinical outcomes in different models after adjustment for clinical factors and N-terminal pro-brain natriuretic peptide (NT-proBNP, P < 0.05). GAS6 could further distinguish the risks of clinical outcomes based on NT-proBNP measurement. CONCLUSION: Elevated plasma GAS6 levels were associated with an increased risk of all-cause and cardiovascular death in patients with AHF. Trial registration NCT03727828 (DRAGON-HF trial) clinicaltrials.gov.


Asunto(s)
Insuficiencia Cardíaca , Péptidos y Proteínas de Señalización Intercelular , Biomarcadores , Insuficiencia Cardíaca/diagnóstico , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Pronóstico , Volumen Sistólico , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA