Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cereb Cortex ; 32(8): 1625-1636, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34519351

RESUMEN

Adult gyrification provides a window into coordinated early neurodevelopment when disruptions predispose individuals to psychiatric illness. We hypothesized that the echoes of such disruptions should be observed within structural gyrification networks in early psychiatric illness that would demonstrate associations with developmentally relevant variables rather than specific psychiatric symptoms. We employed a new data-driven method (Orthogonal Projective Non-Negative Matrix Factorization) to delineate novel gyrification-based networks of structural covariance in 308 healthy controls. Gyrification within the networks was then compared to 713 patients with recent onset psychosis or depression, and at clinical high-risk. Associations with diagnosis, symptoms, cognition, and functioning were investigated using linear models. Results demonstrated 18 novel gyrification networks in controls as verified by internal and external validation. Gyrification was reduced in patients in temporal-insular, lateral occipital, and lateral fronto-parietal networks (pFDR < 0.01) and was not moderated by illness group. Higher gyrification was associated with better cognitive performance and lifetime role functioning, but not with symptoms. The findings demonstrated that gyrification can be parsed into novel brain networks that highlight generalized illness effects linked to developmental vulnerability. When combined, our study widens the window into the etiology of psychiatric risk and its expression in adulthood.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Psicóticos , Adulto , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Humanos , Imagen por Resonancia Magnética/métodos , Trastornos Psicóticos/diagnóstico por imagen , Factores de Riesgo
2.
Transl Psychiatry ; 14(1): 76, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310111

RESUMEN

Autism spectrum disorder is characterized by impaired social communication and interaction. As a neurodevelopmental disorder typically diagnosed during childhood, diagnosis in adulthood is preceded by a resource-heavy clinical assessment period. The ongoing developments in digital phenotyping give rise to novel opportunities within the screening and diagnostic process. Our aim was to quantify multiple non-verbal social interaction characteristics in autism and build diagnostic classification models independent of clinical ratings. We analyzed videos of naturalistic social interactions in a sample including 28 autistic and 60 non-autistic adults paired in dyads and engaging in two conversational tasks. We used existing open-source computer vision algorithms for objective annotation to extract information based on the synchrony of movement and facial expression. These were subsequently used as features in a support vector machine learning model to predict whether an individual was part of an autistic or non-autistic interaction dyad. The two prediction models based on reciprocal adaptation in facial movements, as well as individual amounts of head and body motion and facial expressiveness showed the highest precision (balanced accuracies: 79.5% and 68.8%, respectively), followed by models based on reciprocal coordination of head (balanced accuracy: 62.1%) and body (balanced accuracy: 56.7%) motion, as well as intrapersonal coordination processes (balanced accuracy: 44.2%). Combinations of these models did not increase overall predictive performance. Our work highlights the distinctive nature of non-verbal behavior in autism and its utility for digital phenotyping-based classification. Future research needs to both explore the performance of different prediction algorithms to reveal underlying mechanisms and interactions, as well as investigate the prospective generalizability and robustness of these algorithms in routine clinical care.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adulto , Humanos , Trastorno del Espectro Autista/diagnóstico , Interacción Social , Estudios Prospectivos , Trastorno Autístico/diagnóstico , Aprendizaje Automático
3.
Sci Rep ; 14(1): 5663, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453972

RESUMEN

Predictive modeling strategies are increasingly studied as a means to overcome clinical bottlenecks in the diagnostic classification of autism spectrum disorder. However, while some findings are promising in the light of diagnostic marker research, many of these approaches lack the scalability for adequate and effective translation to everyday clinical practice. In this study, our aim was to explore the use of objective computer vision video analysis of real-world autism diagnostic interviews in a clinical sample of children and young individuals in the transition to adulthood to predict diagnosis. Specifically, we trained a support vector machine learning model on interpersonal synchrony data recorded in Autism Diagnostic Observation Schedule (ADOS-2) interviews of patient-clinician dyads. Our model was able to classify dyads involving an autistic patient (n = 56) with a balanced accuracy of 63.4% against dyads including a patient with other psychiatric diagnoses (n = 38). Further analyses revealed no significant associations between our classification metrics with clinical ratings. We argue that, given the above-chance performance of our classifier in a highly heterogeneous sample both in age and diagnosis, with few adjustments this highly scalable approach presents a viable route for future diagnostic marker research in autism.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Niño , Humanos , Trastorno Autístico/diagnóstico , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/psicología , Reproducibilidad de los Resultados , Movimiento (Física) , Máquina de Vectores de Soporte
4.
Transl Psychiatry ; 14(1): 196, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664377

RESUMEN

The response variability to repetitive transcranial magnetic stimulation (rTMS) challenges the effective use of this treatment option in patients with schizophrenia. This variability may be deciphered by leveraging predictive information in structural MRI, clinical, sociodemographic, and genetic data using artificial intelligence. We developed and cross-validated rTMS response prediction models in patients with schizophrenia drawn from the multisite RESIS trial. The models incorporated pre-treatment sMRI, clinical, sociodemographic, and polygenic risk score (PRS) data. Patients were randomly assigned to receive active (N = 45) or sham (N = 47) rTMS treatment. The prediction target was individual response, defined as ≥20% reduction in pre-treatment negative symptom sum scores of the Positive and Negative Syndrome Scale. Our multimodal sequential prediction workflow achieved a balanced accuracy (BAC) of 94% (non-responders: 92%, responders: 95%) in the active-treated group and 50% in the sham-treated group. The clinical, clinical + PRS, and sMRI-based classifiers yielded BACs of 65%, 76%, and 80%, respectively. Apparent sadness, inability to feel, educational attainment PRS, and unemployment were most predictive of non-response in the clinical + PRS model, while grey matter density reductions in the default mode, limbic networks, and the cerebellum were most predictive in the sMRI model. Our sequential modelling approach provided superior predictive performance while minimising the diagnostic burden in the clinical setting. Predictive patterns suggest that rTMS responders may have higher levels of brain grey matter in the default mode and salience networks which increases their likelihood of profiting from plasticity-inducing brain stimulation methods, such as rTMS. The future clinical implementation of our models requires findings to be replicated at the international scale using stratified clinical trial designs.


Asunto(s)
Aprendizaje Automático , Imagen por Resonancia Magnética , Esquizofrenia , Estimulación Magnética Transcraneal , Humanos , Esquizofrenia/terapia , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Estimulación Magnética Transcraneal/métodos , Femenino , Masculino , Adulto , Flujo de Trabajo , Resultado del Tratamiento , Persona de Mediana Edad , Adulto Joven
5.
Artículo en Inglés | MEDLINE | ID: mdl-37343661

RESUMEN

BACKGROUND: Formal thought disorder (FThD) is a core feature of psychosis, and its severity and long-term persistence relates to poor clinical outcomes. However, advances in developing early recognition and management tools for FThD are hindered by a lack of insight into the brain-level predictors of FThD states and progression at the individual level. METHODS: Two hundred thirty-three individuals with recent-onset psychosis were drawn from the multisite European Prognostic Tools for Early Psychosis Management study. Support vector machine classifiers were trained within a cross-validation framework to separate two FThD symptom-based subgroups (high vs. low FThD severity), using cross-sectional whole-brain multiband fractional amplitude of low frequency fluctuations, gray matter volume and white matter volume data. Moreover, we trained machine learning models on these neuroimaging readouts to predict the persistence of high FThD subgroup membership from baseline to 1-year follow-up. RESULTS: Cross-sectionally, multivariate patterns of gray matter volume within the salience, dorsal attention, visual, and ventral attention networks separated the FThD severity subgroups (balanced accuracy [BAC] = 60.8%). Longitudinally, distributed activations/deactivations within all fractional amplitude of low frequency fluctuation sub-bands (BACslow-5 = 73.2%, BACslow-4 = 72.9%, BACslow-3 = 68.0%), gray matter volume patterns overlapping with the cross-sectional ones (BAC = 62.7%), and smaller frontal white matter volume (BAC = 73.1%) predicted the persistence of high FThD severity from baseline to follow-up, with a combined multimodal balanced accuracy of BAC = 77%. CONCLUSIONS: We report the first evidence of brain structural and functional patterns predictive of FThD severity and persistence in early psychosis. These findings open up avenues for the development of neuroimaging-based diagnostic, prognostic, and treatment options for the early recognition and management of FThD and associated poor outcomes.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Psicóticos , Humanos , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA