Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 65, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229017

RESUMEN

BACKGROUND: Pod shell thickness (PST) is an important agronomic trait of peanut because it affects the ability of shells to resist pest infestations and pathogen attacks, while also influencing the peanut shelling process. However, very few studies have explored the genetic basis of PST. RESULTS: An F2 segregating population derived from a cross between the thick-shelled cultivar Yueyou 18 (YY18) and the thin-shelled cultivar Weihua 8 (WH8) was used to identify the quantitative trait loci (QTLs) for PST. On the basis of a bulked segregant analysis sequencing (BSA-seq), four QTLs were preliminarily mapped to chromosomes 3, 8, 13, and 18. Using the genome resequencing data of YY18 and WH8, 22 kompetitive allele-specific PCR (KASP) markers were designed for the genotyping of the F2 population. Two major QTLs (qPSTA08 and qPSTA18) were identified and finely mapped, with qPSTA08 detected on chromosome 8 (0.69-Mb physical genomic region) and qPSTA18 detected on chromosome 18 (0.15-Mb physical genomic region). Moreover, qPSTA08 and qPSTA18 explained 31.1-32.3% and 16.7-16.8% of the phenotypic variation, respectively. Fifteen genes were detected in the two candidate regions, including three genes with nonsynonymous mutations in the exon region. Two molecular markers (Tif2_A08_31713024 and Tif2_A18_7198124) that were developed for the two major QTL regions effectively distinguished between thick-shelled and thin-shelled materials. Subsequently, the two markers were validated in four F2:3 lines selected. CONCLUSIONS: The QTLs identified and molecular markers developed in this study may lay the foundation for breeding cultivars with a shell thickness suitable for mechanized peanut shelling.


Asunto(s)
Arachis , Sitios de Carácter Cuantitativo , Arachis/genética , Mapeo Cromosómico , Fitomejoramiento , Fenotipo
2.
BMC Plant Biol ; 24(1): 244, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38575936

RESUMEN

BACKGROUND: This study aims to decipher the genetic basis governing yield components and quality attributes of peanuts, a critical aspect for advancing molecular breeding techniques. Integrating genotype re-sequencing and phenotypic evaluations of seven yield components and two grain quality traits across four distinct environments allowed for the execution of a genome-wide association study (GWAS). RESULTS: The nine phenotypic traits were all continuous and followed a normal distribution. The broad heritability ranged from 88.09 to 98.08%, and the genotype-environment interaction effects were all significant. There was a highly significant negative correlation between protein content (PC) and oil content (OC). The 10× genome re-sequencing of 199 peanut accessions yielded a total of 631,988 high-quality single nucleotide polymorphisms (SNPs), with 374 significant SNP loci identified in association with the nine traits of interest. Notably, 66 of these pertinent SNPs were detected in multiple environments, and 48 of them were linked to multiple traits of interest. Five loci situated on chromosome 16 (Chr16) exhibited pleiotropic effects on yield traits, accounting for 17.64-32.61% of the observed phenotypic variation. Two loci on Chr08 were found to be strongly associated with protein and oil contents, accounting for 12.86% and 14.06% of their respective phenotypic variations, respectively. Linkage disequilibrium (LD) block analysis of these seven loci unraveled five nonsynonymous variants, leading to the identification of one yield-related candidate gene and two quality-related candidate genes. The correlation between phenotypic variation and SNP loci in these candidate genes was validated by Kompetitive allele-specific PCR (KASP) marker analysis. CONCLUSIONS: Overall, molecular markers were developed for genetic loci associated with yield and quality traits through a GWAS investigation of 199 peanut accessions across four distinct environments. These molecular tools can aid in the development of desirable peanut germplasm with an equilibrium of yield and quality through marker-assisted breeding.


Asunto(s)
Arachis , Estudio de Asociación del Genoma Completo , Arachis/genética , Sitios de Carácter Cuantitativo/genética , Fitomejoramiento , Mapeo Cromosómico/métodos , Fenotipo , Polimorfismo de Nucleótido Simple/genética
3.
BMC Plant Biol ; 24(1): 207, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515036

RESUMEN

BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum severely affects peanut (Arachis hypogaea L.) yields. The breeding of resistant cultivars is an efficient means of controlling plant diseases. Therefore, identification of resistance genes effective against bacterial wilt is a matter of urgency. The lack of a reference genome for a resistant genotype severely hinders the process of identification of resistance genes in peanut. In addition, limited information is available on disease resistance-related pathways in peanut. RESULTS: Full-length transcriptome data were used to generate wilt-resistant and -susceptible transcript pools. In total, 253,869 transcripts were retained to form a reference transcriptome for RNA-sequencing data analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes revealed the plant-pathogen interaction pathway to be the main resistance-related pathway for peanut to prevent bacterial invasion and calcium plays an important role in this pathway. Glutathione metabolism was enriched in wilt-susceptible genotypes, which would promote glutathione synthesis in the early stages of pathogen invasion. Based on our previous quantitative trait locus (QTL) mapping results, the genes arahy.V6I7WA and arahy.MXY2PU, which encode nucleotide-binding site-leucine-rich repeat receptor proteins, were indicated to be associated with resistance to bacterial wilt. CONCLUSIONS: This study identified several pathways associated with resistance to bacterial wilt and identified candidate genes for bacterial wilt resistance in a major QTL region. These findings lay a foundation for investigation of the mechanism of resistance to bacterial wilt in peanut.


Asunto(s)
Arachis , Ralstonia solanacearum , Arachis/genética , Arachis/microbiología , Transcriptoma , Ralstonia solanacearum/fisiología , Fitomejoramiento , Resistencia a la Enfermedad/genética , Glutatión/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
4.
Genome ; 67(6): 178-188, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38394647

RESUMEN

For peanut, the lack of stable cytological markers is a barrier to tracking specific chromosomes, elucidating the genetic relationships between genomes and identifying chromosomal variations. Chromosome mapping using single-copy oligonucleotide (oligo) probe libraries has unique advantages for identifying homologous chromosomes and chromosomal rearrangements. In this study, we developed two whole-chromosome single-copy oligo probe libraries, LS-7A and LS-8A, based on the reference genome sequences of chromosomes 7A and 8A of Arachis duranensis. Fluorescence in situ hybridization (FISH) analysis confirmed that the libraries could specifically paint chromosomes 7 and 8. In addition, sequential FISH and electronic localization of LS-7A and LS-8A in A. duranensis (AA) and A. ipaensis (BB) showed that chromosomes 7A and 8A contained translocations and inversions relative to chromosomes 7B and 8B. Analysis of the chromosomes of wild Arachis species using LS-8A confirmed that this library could accurately and effectively identify A genome species. Finally, LS-7A and LS-8A were used to paint the chromosomes of interspecific hybrids and their progenies, which verified the authenticity of the interspecific hybrids and identified a disomic addition line. This study provides a model for developing specific oligo probes to identify the structural variations of other chromosomes in Arachis and demonstrates the practical utility of LS-7A and LS-8A.


Asunto(s)
Arachis , Pintura Cromosómica , Cromosomas de las Plantas , Hibridación Fluorescente in Situ , Pintura Cromosómica/métodos , Cromosomas de las Plantas/genética , Arachis/genética , Mapeo Cromosómico , Oligonucleótidos/genética , Translocación Genética
5.
Plant J ; 110(3): 735-747, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35124871

RESUMEN

Systemic acquired resistance is an essential immune response that triggers a broad-spectrum disease resistance throughout the plant. In the present study, we identified a peanut lesion mimic mutant m14 derived from an ethyl methane sulfonate-mutagenized mutant pool of peanut cultivar "Yuanza9102." Brown lesions were observed in the leaves of an m14 mutant from seedling stage to maturity. Using MutMap together with bulked segregation RNA analysis approaches, a G-to-A point mutation was identified in the exon region of candidate gene Arahy.R60CUW, which is the homolog of AtNPR3 (Nonexpresser of PR genes) in Arabidopsis. This point mutation caused a transition from Gly to Arg within the C-terminal transactivation domain of AhNPR3A. The mutation of AhNPR3A showed no effect in the induction of PR genes when treated with salicylic acid. Instead, the mutation resulted in upregulation of WRKY genes and several PR genes, including pathogenesis-related thaumatin- and chitinase-encoding genes, which is consistent with the resistant phenotype of m14 to leaf spot disease. Further study on the AhNPR3A gene will provide valuable insights into understanding the molecular mechanism of systemic acquired resistance in peanut. Moreover, our results indicated that a combination of MutMap and bulked segregation RNA analysis is an effective method for identifying genes from peanut mutants.


Asunto(s)
Arachis , Resistencia a la Enfermedad , Arachis/genética , Resistencia a la Enfermedad/genética , Fenotipo , ARN
6.
BMC Genomics ; 24(1): 495, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37641021

RESUMEN

Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide. Improving its yield is crucial for sustainable peanut production to meet increasing food and industrial requirements. Deciphering the genetic control underlying peanut kernel weight and size, which are essential components of peanut yield, would facilitate high-yield breeding. A high-density single nucleotide polymorphism (SNP)-based linkage map was constructed using a recombinant inbred lines (RIL) population derived from a cross between the variety Yuanza9102 and a germplasm accession wt09-0023. Kernel weight and size quantitative trait loci (QTLs) were co-localized to a 0.16 Mb interval on Arahy07 using inclusive composite interval mapping (ICIM). Analysis of SNP, and Insertion or Deletion (INDEL) markers in the QTL interval revealed a gene encoding a pentatricopeptide repeat (PPR) superfamily protein as a candidate closely linked with kernel weight and size in cultivated peanut. Examination of the PPR gene family indicated a high degree of collinearity of PPR genes between A. hypogaea and its diploid progenitors, Arachis duranensis and Arachis ipaensis. The candidate PPR gene, Arahy.JX1V6X, displayed a constitutive expression pattern in developing seeds. These findings lay a foundation for further fine mapping of QTLs related to kernel weight and size, as well as validation of candidate genes in cultivated peanut.


Asunto(s)
Arachis , Sitios de Carácter Cuantitativo , Arachis/genética , Fitomejoramiento , Mapeo Cromosómico , Citoplasma
7.
BMC Plant Biol ; 23(1): 518, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884908

RESUMEN

BACKGROUND: Peanut is an important oil crop worldwide. Peanut web blotch is a fungal disease that often occurs at the same time as other leaf spot diseases, resulting in substantial leaf drop, which seriously affects the peanut yield and quality. However, the molecular mechanism underlying peanut resistance to web blotch is unknown. RESULTS: The cytological examination revealed no differences in the conidium germination rate between the web blotch-resistant variety ZH and the web blotch-susceptible variety PI at 12-48 hpi. The appressorium formation rate was significantly higher for PI than for ZH at 24 hpi. The papilla formation rate at 36 hpi and the hypersensitive response rate at 60 and 84 hpi were significantly higher for ZH than for PI. We also compared the transcriptional profiles of web blotch-infected ZH and PI plants at 0, 12, 24, 36, 48, 60, and 84 hpi using an RNA-seq technique. There were more differentially expressed genes (DEGs) in ZH and PI at 12, 36, 60, and 84 hpi than at 24 and 48 hpi. Moreover, there were more DEGs in PI than in ZH at each time-point. The analysis of metabolic pathways indicated that pantothenate and CoA biosynthesis; monobactam biosynthesis; cutin, suberine and wax biosynthesis; and ether lipid metabolism are specific to the active defense of ZH against YY187, whereas porphyrin metabolism as well as taurine and hypotaurine metabolism are pathways specifically involved in the passive defense of ZH against YY187. In the protein-protein interaction (PPI) network, most of the interacting proteins were serine acetyltransferases and cysteine synthases, which are involved in the cysteine synthesis pathway. The qRT-PCR data confirmed the reliability of the transcriptome analysis. CONCLUSION: On the basis of the PPI network for the significantly enriched genes in the pathways which were specifically enriched at different time points in ZH, we hypothesize that serine acetyltransferases and cysteine synthases are crucial for the cysteine-related resistance of peanut to web blotch. The study results provide reference material for future research on the mechanism mediating peanut web blotch resistance.


Asunto(s)
Arachis , Transcriptoma , Arachis/genética , Arachis/microbiología , Cisteína/genética , Reproducibilidad de los Resultados , Perfilación de la Expresión Génica , Acetiltransferasas/genética , Serina/genética
8.
Theor Appl Genet ; 136(5): 105, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027030

RESUMEN

KEY MESSAGE: QTLs for growth habit are identified on Arahy.15 and Arahy.06 in peanut, and diagnostic markers are developed and validated for further use in marker-assisted breeding. Peanut is a unique legume crop because its pods develop and mature underground. The pegs derive from flowers following pollination, then reach the ground and develop into pods in the soil. Pod number per plant is influenced by peanut growth habit (GH) that has been categorized into four types, including erect, bunch, spreading and prostrate. Restricting pod development at the plant base, as would be the case for peanut plants with upright lateral branches, would decrease pod yield. On the other hand, GH characterized by spreading lateral branches on the ground would facilitate pod formation on the nodes, thereby increasing yield potential. We describe herein an investigation into the GH traits of 521 peanut recombinant inbred lines grown in three distinct environments. Quantitative trait loci (QTLs) for GH were identified on linkage group (LG) 15 between 203.1 and 204.2 cM and on LG 16 from 139.1 to 139.3 cM. Analysis of resequencing data in the identified QTL regions revealed that single nucleotide polymorphism (SNP) or insertion and/or deletion (INDEL) at Arahy15.156854742, Arahy15.156931574, Arahy15.156976352 and Arahy06.111973258 may affect the functions of their respective candidate genes, Arahy.QV02Z8, Arahy.509QUQ, Arahy.ATH5WE and Arahy.SC7TJM. These SNPs and INDELs in relation to peanut GH were further developed for KASP genotyping and tested on a panel of 77 peanut accessions with distinct GH features. This study validates four diagnostic markers that may be used to distinguish erect/bunch peanuts from spreading/prostrate peanuts, thereby facilitating marker-assisted selection for GH traits in peanut breeding.


Asunto(s)
Arachis , Sitios de Carácter Cuantitativo , Arachis/genética , Mapeo Cromosómico , Fitomejoramiento , Fenotipo
9.
Mol Breed ; 43(10): 72, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37786866

RESUMEN

Population and genotype data are essential for genetic mapping. The multi-parent advanced generation intercross (MAGIC) population is a permanent mapping population used for precisely mapping quantitative trait loci. Moreover, genotyping-by-target sequencing (GBTS) is a robust high-throughput genotyping technology characterized by its low cost, flexibility, and limited requirements for information management and support. In this study, an 8-way MAGIC population was constructed using eight elite founder lines. In addition, GenoBaits Peanut 40K was developed and utilized for the constructed MAGIC population. A subset (297 lines) of the MAGIC population at the S2 stage was genotyped using GenoBaits Peanut 40K. Furthermore, these lines and the eight parents were analyzed in terms of pod length, width, area, and perimeter. A total of 27 single nucleotide polymorphisms (SNPs) were revealed to be significantly associated with peanut pod size-related traits according to a genome-wide association study. The GenoBaits Peanut 40K provided herein and the constructed MAGIC population will be applicable for future research to identify the key genes responsible for important peanut traits. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01417-w.

10.
Theor Appl Genet ; 135(4): 1319-1330, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35059781

RESUMEN

KEY MESSAGE: A major QTL, qBWA12, was fine mapped to a 216.68 kb physical region, and A12.4097252 was identified as a useful KASP marker for breeding peanut varieties resistant to bacterial wilt. Bacterial wilt, caused by Ralstonia solanacearum, is a major disease detrimental to peanut production in China. Breeding disease-resistant peanut varieties is the most economical and effective way to prevent the disease and yield loss. Fine mapping the QTLs for bacterial wilt resistance is critical for the marker-assisted breeding of disease-resistant varieties. A recombinant inbred population comprising 521 lines was used to construct a high-density genetic linkage map and to identify QTLs for bacterial wilt resistance following restriction-site-associated DNA sequencing. The genetic map, which included 5120 SNP markers, covered a length of 3179 cM with an average marker distance of 0.6 cM. Four QTLs for bacterial wilt resistance were mapped on four chromosomes. One major QTL, qBWA12, with LOD score of 32.8-66.0 and PVE of 31.2-44.8%, was stably detected in all four development stages investigated over the 3 trial years. Additionally, qBWA12 spanned a 2.7 cM region, corresponding to approximately 0.4 Mb and was fine mapped to a 216.7 kb region by applying KASP markers that were polymorphic between the two parents based on whole-genome resequencing data. In a large collection of breeding and germplasm lines, it was proved that KASP marker A12.4097252 can be applied for the marker-assisted breeding to develop peanut varieties resistant to bacterial wilt. Of the 19 candidate genes in the region covered by qBWA12, nine NBS-LRR genes should be further investigated regarding their potential contribution to the resistance of peanut against bacterial wilt.


Asunto(s)
Arachis , Resistencia a la Enfermedad , Arachis/genética , Arachis/microbiología , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple
11.
BMC Plant Biol ; 21(1): 107, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33610178

RESUMEN

BACKGROUND: Chromosomal variants play important roles in crop breeding and genetic research. The development of single-stranded oligonucleotide (oligo) probes simplifies the process of fluorescence in situ hybridization (FISH) and facilitates chromosomal identification in many species. Genome sequencing provides rich resources for the development of oligo probes. However, little progress has been made in peanut due to the lack of efficient chromosomal markers. Until now, the identification of chromosomal variants in peanut has remained a challenge. RESULTS: A total of 114 new oligo probes were developed based on the genome-wide tandem repeats (TRs) identified from the reference sequences of the peanut variety Tifrunner (AABB, 2n = 4x = 40) and the diploid species Arachis ipaensis (BB, 2n = 2x = 20). These oligo probes were classified into 28 types based on their positions and overlapping signals in chromosomes. For each type, a representative oligo was selected and modified with green fluorescein 6-carboxyfluorescein (FAM) or red fluorescein 6-carboxytetramethylrhodamine (TAMRA). Two cocktails, Multiplex #3 and Multiplex #4, were developed by pooling the fluorophore conjugated probes. Multiplex #3 included FAM-modified oligo TIF-439, oligo TIF-185-1, oligo TIF-134-3 and oligo TIF-165. Multiplex #4 included TAMRA-modified oligo Ipa-1162, oligo Ipa-1137, oligo DP-1 and oligo DP-5. Each cocktail enabled the establishment of a genome map-based karyotype after sequential FISH/genomic in situ hybridization (GISH) and in silico mapping. Furthermore, we identified 14 chromosomal variants of the peanut induced by radiation exposure. A total of 28 representative probes were further chromosomally mapped onto the new karyotype. Among the probes, eight were mapped in the secondary constrictions, intercalary and terminal regions; four were B genome-specific; one was chromosome-specific; and the remaining 15 were extensively mapped in the pericentric regions of the chromosomes. CONCLUSIONS: The development of new oligo probes provides an effective set of tools which can be used to distinguish the various chromosomes of the peanut. Physical mapping by FISH reveals the genomic organization of repetitive oligos in peanut chromosomes. A genome map-based karyotype was established and used for the identification of chromosome variations in peanut following comparisons with their reference sequence positions.


Asunto(s)
Arachis/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Productos Agrícolas/genética , Genoma de Planta , Cariotipo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Variación Genética , Genotipo , Sondas de Oligonucleótidos
12.
BMC Plant Biol ; 20(1): 249, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493219

RESUMEN

BACKGROUND: Web blotch is one of the most important foliar diseases worldwide in peanut (Arachis hypogaea L.). The identification of quantitative trait loci (QTLs) for peanut web blotch resistance represents the basis for gene mining and the application of molecular breeding technologies. RESULTS: In this study, a peanut recombinant inbred line (RIL) population was used to map QTLs for web blotch resistance based on high-throughput genome-wide sequencing. Frequency distributions of disease grade and disease index in five environments indicated wide phenotypic variations in response to web blotch among RILs. A high-density genetic map was constructed, containing 3634 bin markers distributed on 20 peanut linkage groups (LGs) with an average genetic distance of 0.5 cM. In total, eight QTLs were detected for peanut web blotch resistance in at least two environments, explaining from 2.8 to 15.1% of phenotypic variance. Two major QTLs qWBRA04 and qWBRA14 were detected in all five environments and were linked to 40 candidate genes encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) or other proteins related to disease resistances. CONCLUSIONS: The results of this study provide a basis for breeding peanut cultivars with web blotch resistance.


Asunto(s)
Arachis/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Arachis/inmunología , Arachis/microbiología , Mapeo Cromosómico , Marcadores Genéticos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Phoma , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple/genética
13.
Clin Transplant ; 34(10): e14053, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32735352

RESUMEN

Donor-derived cell-free DNA (dd-cfDNA) is a promising biomarker for monitoring allograft status. However, whether dd-cfDNA can reflect real-time anti-rejection treatment effects remains unclear. We prospectively recruited 28 patients with acute renal rejection, including 5 with ABMR, 12 with type IA or type IB rejection, and 11 with type IIA or IIB rejection. dd-cfDNA levels in peripheral blood were measured using human single nucleotide polymorphism (SNP) locus capture hybridization. The percentage of dd-cfDNA (dd-cfDNA%) declined significantly from 2.566 ± 0.549% to 0.773 ± 0.116% (P < .001) after anti-rejection therapy. The dd-cfDNA% decreased steadily over the course of 3 days with daily methylprednisolone injections, but no significant difference in the dd-cfDNA% was observed between the end of anti-rejection therapy and 2 weeks later. Changes in the dd-cfDNA% (∆dd-cfDNA%) demonstrated a positive correlation with estimated glomerular filtration rates at 1 month (ρ = 2.570, P = .022), 3 months (ρ = 3.210, P = .027), and 6 months (ρ = 2.860, P = .019) after therapy. Thus, the dd-cfDNA assay shows prognostic capabilities in therapy outcome and allograft recovery; however, its ability is inhibited by methylprednisolone regardless of the types of rejection. Additionally, a reassessment of frequency intervals for testing is required.


Asunto(s)
Ácidos Nucleicos Libres de Células , Trasplante de Riñón , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/tratamiento farmacológico , Rechazo de Injerto/etiología , Humanos , Pronóstico , Estudios Prospectivos
14.
Breed Sci ; 69(2): 234-243, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31481832

RESUMEN

High oleic acid composition is an important determinant of seed quality in peanut (Arachis hypogaea) in regard to its nutritional benefits for human health and prolonged shelf-life for peanut products. To improve the oleic acid content of popular peanut cultivars in China, four peanut cultivars of different market types were hybridized with high-oleic-acid donors and backcrossed for four generations as recurrent parents using fad2 marker-assisted backcross selection. Seed quality traits in advanced generations derived by selfing were assessed using near-infrared reflectance spectroscopy for detection of oleic acid and Kompetitive allele-specific PCR (KASP) screening of fad2 mutant markers. Twenty-four high-oleic-acid lines of BC4F4 and BC4F5 populations, with morphological features and agronomic traits similar to those of the recurrent parents, were obtained within 5 years. The genetic backgrounds of BC4F5 lines were estimated using the KASP assay, which revealed the genetic background recovery rate was 79.49%-92.31%. The superior lines raised are undergoing a multi-location test for cultivar registration and release. To our knowledge, this is the first application of single nucleotide polymorphism markers based on the high-throughput and cost-effective KASP assay for detection of fad2 mutations and genetic background evaluation in a peanut breeding program.

15.
BMC Plant Biol ; 18(1): 240, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333010

RESUMEN

BACKGROUND: Arachis contains 80 species that carry many beneficial genes that can be utilized in the genetic improvement of peanut (Arachis hypogaea L. 2n = 4x = 40, genome AABB). Chromosome engineering is a powerful technique by which these genes can be transferred and utilized in cultivated peanut. However, their small chromosomes and insufficient cytological markers have made chromosome identification and studies relating to genome evolution quite difficult. The development of efficient cytological markers or probes is very necessary for both chromosome engineering and genome discrimination in cultivated peanut. RESULTS: A simple and efficient oligonucleotide multiplex probe to distinguish genomes, chromosomes, and chromosomal aberrations of peanut was developed based on eight single-stranded oligonucleotides (SSONs) derived from repetitive sequences. High-resolution karyotypes of 16 Arachis species, two interspecific F1 hybrids, and one radiation-induced M1 plant were then developed by fluorescence in situ hybridization (FISH) using oligonucleotide multiplex, 45S and 5S rDNAs, and genomic in situ hybridization (GISH) using total genomic DNA of A. duranensis (2n = 2x = 20, AA) and A. ipaënsis (2n = 2x = 20, BB) as probes. Genomes, chromosomes, and aberrations were clearly identifiable in the established karyotypes. All eight cultivars had similar karyotypes, whereas the eight wild species exhibited various chromosomal variations. In addition, a chromosome-specific SSON library was developed based on the single-copy sequence of chromosome 6A of A. duranensis. In combination with repetitive SSONs and rDNA FISH, the single-copy SSON library was applied to identify the corresponding A3 chromosome in the A. duranensis karyotype. CONCLUSIONS: The development of repetitive and single-copy SSON probes for FISH and GISH provides useful tools for the differentiation of chromosomes and identification of structural chromosomal rearrangement. It facilitates the development of high-resolution karyotypes and detection of chromosomal variations in Arachis species. To our knowledge, the methodology presented in this study demonstrates for the first time the correlation between a sequenced chromosome region and a cytologically identified chromosome in peanut.


Asunto(s)
Arachis/genética , Cromosomas de las Plantas/genética , Reordenamiento Génico , Genoma de Planta/genética , Pintura Cromosómica , ADN Ribosómico , Hibridación Fluorescente in Situ , Cariotipificación , Sondas Moleculares , Oligonucleótidos , Secuencias Repetitivas de Ácidos Nucleicos/genética
17.
Genes (Basel) ; 15(2)2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38397150

RESUMEN

The capability of embryogenic callus induction is a prerequisite for in vitro plant regeneration. However, embryogenic callus induction is strongly genotype-dependent, thus hindering the development of in vitro plant genetic engineering technology. In this study, to examine the genetic variation in embryogenic callus induction rate (CIR) in peanut (Arachis hypogaea L.) at the seventh, eighth, and ninth subcultures (T7, T8, and T9, respectively), we performed genome-wide association studies (GWAS) for CIR in a population of 353 peanut accessions. The coefficient of variation of CIR among the genotypes was high in the T7, T8, and T9 subcultures (33.06%, 34.18%, and 35.54%, respectively), and the average CIR ranged from 1.58 to 1.66. A total of 53 significant single-nucleotide polymorphisms (SNPs) were detected (based on the threshold value -log10(p) = 4.5). Among these SNPs, SNPB03-83801701 showed high phenotypic variance and neared a gene that encodes a peroxisomal ABC transporter 1. SNPA05-94095749, representing a nonsynonymous mutation, was located in the Arahy.MIX90M locus (encoding an auxin response factor 19 protein) at T8, which was associated with callus formation. These results provide guidance for future elucidation of the regulatory mechanism of embryogenic callus induction in peanut.


Asunto(s)
Arachis , Estudio de Asociación del Genoma Completo , Arachis/genética , Polimorfismo de Nucleótido Simple , Genotipo , Ingeniería Genética
18.
Genes (Basel) ; 15(3)2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540324

RESUMEN

Phenylalanine ammonia-lyase (PAL) is an essential enzyme in the phenylpropanoid pathway, in which numerous aromatic intermediate metabolites play significant roles in plant growth, adaptation, and disease resistance. Cultivated peanuts are highly susceptible to Aspergillus flavus L. infection. Although PAL genes have been characterized in various major crops, no systematic studies have been conducted in cultivated peanuts, especially in response to A. flavus infection. In the present study, a systematic genome-wide analysis was conducted to identify PAL genes in the Arachis hypogaea L. genome. Ten AhPAL genes were distributed unevenly on nine A. hypogaea chromosomes. Based on phylogenetic analysis, the AhPAL proteins were classified into three groups. Structural and conserved motif analysis of PAL genes in A. hypogaea revealed that all peanut PAL genes contained one intron and ten motifs in the conserved domains. Furthermore, synteny analysis indicated that the ten AhPAL genes could be categorized into five pairs and that each AhPAL gene had a homologous gene in the wild-type peanut. Cis-element analysis revealed that the promoter region of the AhPAL gene family was rich in stress- and hormone-related elements. Expression analysis indicated that genes from Group I (AhPAL1 and AhPAL2), which had large number of ABRE, WUN, and ARE elements in the promoter, played a strong role in response to A. flavus stress.


Asunto(s)
Arachis , Aspergillus flavus , Aspergillus flavus/genética , Arachis/genética , Arachis/metabolismo , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Filogenia , Regiones Promotoras Genéticas
19.
Nat Commun ; 15(1): 4385, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782906

RESUMEN

The parasite Toxoplasma gondii persists in its hosts by converting from replicating tachyzoites to latent bradyzoites housed in tissue cysts. The molecular mechanisms that mediate T. gondii differentiation remain poorly understood. Through a mutagenesis screen, we identified translation initiation factor eIF1.2 as a critical factor for T. gondii differentiation. A F97L mutation in eIF1.2 or the genetic ablation of eIF1.2 (∆eif1.2) markedly impeded bradyzoite cyst formation in vitro and in vivo. We demonstrated, at single-molecule level, that the eIF1.2 F97L mutation impacts the scanning process of the ribosome preinitiation complex on a model mRNA. RNA sequencing and ribosome profiling experiments unveiled that ∆eif1.2 parasites are defective in upregulating bradyzoite induction factors BFD1 and BFD2 during stress-induced differentiation. Forced expression of BFD1 or BFD2 significantly restored differentiation in ∆eif1.2 parasites. Together, our findings suggest that eIF1.2 functions by regulating the translation of key differentiation factors necessary to establish chronic toxoplasmosis.


Asunto(s)
Toxoplasma , Toxoplasma/metabolismo , Toxoplasma/genética , Animales , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Toxoplasmosis/parasitología , Toxoplasmosis/metabolismo , Ratones , Mutación , Ribosomas/metabolismo , Biosíntesis de Proteínas , Femenino , ARN Mensajero/metabolismo , ARN Mensajero/genética , Diferenciación Celular , Humanos
20.
Appl Biochem Biotechnol ; 194(6): 2465-2480, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35132520

RESUMEN

Significant anaerobic fermentation occurs in silage through the action of anaerobic bacteria. The objective of this study was to evaluate the effects of cellulase and Lactobacillus plantarum on the fermentation quality and bacterial community of whole-plant corn and peanut vine mixed silage. Mixed silage was tested with no addition (CK), addition of Lactobacillus plantarum (LP), addition of cellulase (CE), and the simultaneous addition of Lactobacillus plantarum and cellulase (LPCE). LPCE samples exhibited decreased pH; decreased content of acetic acid, propionic acid, and butyric acid; and increased content of lactic acid. LP and LPCE had better effects on chemical composition than CK and CE, especially in decreasing acid detergent fiber and neutral detergent fiber content. High-throughput sequencing identified Lactobacillus, Klebsiella, Serratia, and Weissella as the main microorganisms. LP and CE increased the abundance of Acetobacter, and LPCE decreased the abundance of Acetobacter. All additives decreased the abundance of Weissella, Leuconostoc, and Lactococcus, and increased the abundance of Pantoea. Overall, simultaneous addition of cellulase and Lactobacillus plantarum helped to improve the quality of mixed silage of whole-plant corn and peanut vines.


Asunto(s)
Celulasa , Lactobacillus plantarum , Microbiota , Arachis/metabolismo , Celulasa/metabolismo , Detergentes , Fermentación , Lactobacillus plantarum/metabolismo , Ensilaje/microbiología , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA