Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(23): e2120088119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35648821

RESUMEN

Bimetallic alloy catalysts show strong structural and compositional dependence on their activity, selectivity, and stability. Often referred to as the "synergetic effect" of two metal elements in the alloys, their detailed dynamic information, structurally and chemically, of catalyst surface under reaction conditions remains largely elusive. Here, using aberration-corrected environmental transmission electron microscopy, we visualize the atomic-scale synergetic surface activation of CuAu under a water­gas shift reaction condition. The unique "periodic" structural activation largely determines the dominating reaction pathway, which is related to a possible "carboxyl" reaction route corroborated by density functional theory­based calculation and ab initio molecular dynamics simulation. These results demonstrate how the alloy surface is activated and catalyzes the chemical reaction, which provides insights into catalyst design with atom precision.

2.
Small ; 20(4): e2305122, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37718443

RESUMEN

Metal-support interaction (MSI) provides great possibilities to tune the activity, selectivity, and stability of heterogeneous catalysts. Herein, the Au/ZnO catalyst is prepared by commercial ZnO and chloroauric acid, and the structure evolution of the catalyst pretreated by H2 and O2 gas at varied temperature is investigated to provide mechanistic insights of MSI. It is found that the H2 treatment at 300 °C and above can induce the formation of both the ZnOx overlayer and bulk Au-Zn alloy. In contrast, the O2 treatment can form the ZnOx overlayer at 500 °C and above without the formation of Au-Zn alloy. It is also revealed that the ZnOx overlayer is dynamically stable (permeable), which can provide access for reactant molecules during the reaction process. And, the Au-Zn alloy can recover to Au and ZnO under the CO oxidation reaction condition, which can be deemed as a re-activation process that endows H2 -treated samples with the superior activity and stability.

3.
J Am Chem Soc ; 142(8): 4022-4027, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32017551

RESUMEN

Supported alloy nanoparticles are prevailing alternative low-cost catalysts for both heterogeneous and electrochemical catalytic processes. Gas molecules selectively interacting with one metal element induces a dynamic structural change of alloy nanoparticles under reaction conditions and largely controls their catalytic properties. However, such a multicomponent dynamic-interaction-controlled evolution, both structural and chemical, remains far from clear. Herein, by using state-of-the-art environmental TEM, we directly visualize, in situ at the atomic scale, the evolution of a AuCu alloy nanoparticle supported on CeO2 during CO oxidation. We find that gas molecules can "free" metal atoms on the (010) surface and form highly mobile atom clusters. Remarkably, we discover that CO exposure induces Au segregation and activation on the nanoparticle surface, while O2 exposure leads to the segregation and oxidation of Cu on the particle surface. The as-formed Cu2O/AuCu interface may facilitate CO-O interaction corroborated by DFT calculations. These findings provide insights into the atomistic mechanisms on alloy nanoparticles during catalytic CO oxidation reaction and to a broad scope of rational design of alloy nanoparticle catalysts.

4.
Phys Rev Lett ; 125(15): 156101, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33095595

RESUMEN

Atomic-scale interaction of water vapor with metal surfaces beyond surface adsorption under technologically relevant conditions remains mostly unexplored. Using aberration-corrected environmental transmission electron microscopy, we reveal the dynamic surface activation of Cu by H_{2}O at elevated temperature and pressure. We find a structural transition from flat to corrugated surface for the Cu(011) under low water-vapor pressure. Increasing the water-vapor pressure leads to the surface reaction of Cu with dissociated H_{2}O, resulting in the formation of a metastable "bilayer" Cu─O─H phase. Corroborated by density functional theory and ab initio molecular dynamics calculations, the cooperative O and OH interaction with Cu is responsible for the formation and subsurface propagation of this phase.

5.
Angew Chem Int Ed Engl ; 59(6): 2505-2509, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816140

RESUMEN

By using in situ aberration-corrected environmental transmission electron microscopy, for the first time at atomic level, the dynamic evolution of the Cu surface is captured during CO oxidation. Under reaction conditions, the Cu surface is activated, typically involving 2-3 atomic layers with the formation of a reversible metastable phase that only exists during catalytic reactions. The distinctive role of CO and O2 in the surface activation is revealed, which features CO exposure to lead to surface roughening and consequently formation of low-coordinated Cu atoms, while O2 exposure induces a quasi-crystalline CuOx phase. Supported by DFT calculations, it is shown that crystalline CuOx reversibly transforms into the amorphous phase, acting as an active species to facilitate the interaction of gas reactants and catalyzing CO oxidation.

6.
Nano Lett ; 15(10): 6490-3, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26402057

RESUMEN

Inhibition of the heat shock proteins (HSPs) has been considered to be one of the promising strategies for cancer treatment. However, developing highly effective HSP inhibitors remains a challenge. Recent studies on the evolutionarily distinct functions between intracellular and extracellular HSPs (eHSPs) trigger a new direction with eHSPs as chemotherapeutic targets. Herein, the first engineered eHSP nanoinhibitor with high effectiveness is reported. The zinc-aspartic acid nanofibers have specific binding ability to eHSP90, which induces a decrease in the level of the tumor marker-gelatinases, consequently resulting in downregulation of the tumor-promoting inflammation nuclear factor-kappa B signaling, and finally inhibiting cancer cell proliferation, migration, and invasion; while they are harmless to normal cells. Our findings highlight the potential for cancer treatment by altering the key determinants that shape its ability to adapt and evolve using novel nanomaterials.


Asunto(s)
Nanofibras , Neoplasias/patología , Zinc/farmacología , Humanos , Zinc/química
7.
J Phys Chem Lett ; 13(31): 7170-7176, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35904340

RESUMEN

Atomic defects are critical to tuning the physical and chemical properties of functional materials such as catalysts, semiconductors, and 2D materials. However, direct structural characterization of atomic defects, especially their formation and annihilation under practical conditions, is challenging yet crucial to understanding the underlying mechanisms driving defect dynamics, which remain mostly elusive. Here, through in situ atomic imaging by an aberration-corrected environmental transmission electron microscope (AC-ETEM), we directly visualize the formation and annihilation mechanism of planar defects in monoclinic WO3 on the atomic scale in real time. We captured the atomistic process of the nucleation dynamics of the dislocation core in the [010] direction, followed by its propagation to form a planar defect. Corroborated by density functional theory-based calculations, we rationalize the formation of dislocation through O extraction from bridge sites followed by an atomic channeling process. These in situ observations shed light on the defect dynamics in oxides and provide atomic insights into forming and manipulating defects in functional materials.

8.
J Phys Chem Lett ; 12(29): 6996-7001, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34283613

RESUMEN

Metal oxidation initiates from surface adsorption to subsurface and bulk reaction through continuous interfacial phase transformation from metals to oxides. How the initial interfacial process affects the whole process of metal oxidation remains largely elusive because of the lack of direct observation of the evolving interface. Here, through in situ atomic-scale environmental TEM observations of Cu surface reaction in water vapor, we demonstrate that the interfacial strain between the substrate and growing oxide is coupled into the continuing chemical reaction that determines the reaction kinetics. Atomic imaging of the reaction process in real time reveals that the growing oxides could temporarily possess a disordered CuOx phase to lower its interfacial strain with Cu substrate and can transform to a crystalline Cu2O phase later. This flexibility of the oxide phase results from the strong chemomechanical coupling during the interfacial phase transformation, which enhances the oxide penetration into the metal under water vapor.

9.
ACS Appl Mater Interfaces ; 13(35): 41707-41714, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34427430

RESUMEN

Supported metal catalysts experience significant structural evolution during the activation process and reaction conditions, which is critical to achieve a desired active surface and interface enabling efficient catalytic processes. However, such dynamic structural information and related mechanistic understandings remain largely elusive owing to the limitation of real-time capturing dynamic information under reaction conditions. Here, using in situ environment transmission electron microscopy, we demonstrate the atomic-scale structural evolution of the model Cu/ZnO catalyst under relevant water-gas shift reaction (WGSR) conditions. Under a CO gas environment, Cu nanoparticles decompose into smaller Cu species and redistribute on ZnO supports with either the crystalline Cu2O or amorphous CuOx phase due to a strong CO-Cu interaction. In addition, we visualize various metal-support interactions between Cu and ZnO under reaction conditions, e.g., ZnO clusters precipitating on Cu nanoparticles, which are critical to understand active sites of Cu/ZnO as catalysts for WGSR. These in situ atomic-scale observations highlight the dynamic interplays between Cu and ZnO that can be extended to other supported metal catalysts.

10.
ACS Appl Mater Interfaces ; 13(1): 1903-1913, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33351607

RESUMEN

The initial growth mode of oxide on alloy plays a decisive role in the development of protective oxide scales on metals and alloys, which is critical for their functionality for high temperature applications. However, the atomistic mechanisms dictating that the oxide growth remain elusive due to the lack of direct in situ observation of the initial oxide nucleation and growth at atomic-scale. Herein, we employed environmental transmission electron microscopy and the first-principles calculations to elucidate the initial atomic process of nickel-chromium (Ni-Cr) alloy oxidation. We directly revealed three different oxide growth modes of initial NiO islands on Ni-Cr alloy upon oxidation by O2, which result in distinct crystallography and morphology. The multimode oxide growth leads to irregular-shaped oxides, which is shown to be sensitive to the local mass transport. This localization of oxide growth mode is also demonstrated by the identified vigorous competence in oxide growth and thus shown to be kinetically controlled. The concept exemplified here provides insights into the oxide formation and has significant implications in other material and chemical processes involving oxygen gas, such as corrosion, heterogeneous catalysis, and ionic conduction.

11.
ACS Appl Mater Interfaces ; 12(46): 52201-52207, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33147010

RESUMEN

The functionalities of two-dimensional (2D) materials are solely determined by their perfect single-layer lattice or precisely stacking of multiple lattice planes, which is predominately determined during their growth process. Although the growth of graphene has been successfully achieved on different substrates with a large area up to millimeters, direct visualization of atomic-scale graphene growth in real time still lacks, which is vital to decipher atomistic mechanisms of graphene growth. Here, we employ aberration-corrected environmental transmission electron microscopy (AC-ETEM) to visualize the nucleation and growth of graphene at the atomic scale in real time. We find a unique lateral epitaxial growth process of graphene on Cu edges under the CO2 atmosphere with a ledge-flow process. The nucleation of graphene nuclei from amorphous carbon atoms also has been found to proceed with a gradual ordering of in-plane carbon atoms. The coalescence of smaller graphene nanoislands to form large ones is thermodynamically favored, and the evolution of atomic structures at grain boundaries is also revealed in great details. These atomic insights obtained from real-time observations can provide direct evidence for the growth mechanisms of graphene, which can be extended to other 2D materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA