Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39013458

RESUMEN

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.

2.
Am J Hum Genet ; 108(2): 346-356, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33513338

RESUMEN

Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz/genética , Mutación , Trastornos del Neurodesarrollo/genética , Cromatina/metabolismo , Femenino , Estudios de Asociación Genética , Haploinsuficiencia , Humanos , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/química , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Modelos Moleculares , Mutación Missense , Unión Proteica , Dominios Proteicos , Transcripción Genética
3.
Am J Hum Genet ; 103(5): 752-768, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388402

RESUMEN

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.


Asunto(s)
Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Megalencefalia/genética , Factores de Transcripción NFI/genética , Adolescente , Adulto , Animales , Corteza Cerebral/patología , Niño , Preescolar , Codón sin Sentido/genética , Estudios de Cohortes , Cuerpo Calloso/patología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
4.
Am J Hum Genet ; 95(5): 622-32, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25439729

RESUMEN

Filippi syndrome is a rare, presumably autosomal-recessive disorder characterized by microcephaly, pre- and postnatal growth failure, syndactyly, and distinctive facial features, including a broad nasal bridge and underdeveloped alae nasi. Some affected individuals have intellectual disability, seizures, undescended testicles in males, and teeth and hair abnormalities. We performed homozygosity mapping and whole-exome sequencing in a Sardinian family with two affected children and identified a homozygous frameshift mutation, c.571dupA (p.Ile191Asnfs(∗)6), in CKAP2L, encoding the protein cytoskeleton-associated protein 2-like (CKAP2L). The function of this protein was unknown until it was rediscovered in mice as Radmis (radial fiber and mitotic spindle) and shown to play a pivotal role in cell division of neural progenitors. Sanger sequencing of CKAP2L in a further eight unrelated individuals with clinical features consistent with Filippi syndrome revealed biallelic mutations in four subjects. In contrast to wild-type lymphoblastoid cell lines (LCLs), dividing LCLs established from the individuals homozygous for the c.571dupA mutation did not show CKAP2L at the spindle poles. Furthermore, in cells from the affected individuals, we observed an increase in the number of disorganized spindle microtubules owing to multipolar configurations and defects in chromosome segregation. The observed cellular phenotypes are in keeping with data from in vitro and in vivo knockdown studies performed in human cells and mice, respectively. Our findings show that loss-of-function mutations in CKAP2L are a major cause of Filippi syndrome.


Asunto(s)
Proteínas del Citoesqueleto/genética , Trastornos del Crecimiento/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Sindactilia/genética , Animales , Secuencia de Bases , Análisis Citogenético , Facies , Mutación del Sistema de Lectura/genética , Componentes del Gen , Genes Recesivos/genética , Trastornos del Crecimiento/patología , Humanos , Discapacidad Intelectual/patología , Italia , Masculino , Ratones , Microcefalia/patología , Microscopía Confocal , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Sindactilia/patología
5.
Nat Genet ; 39(8): 957-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17632512

RESUMEN

Donnai-Barrow syndrome is associated with agenesis of the corpus callosum, congenital diaphragmatic hernia, facial dysmorphology, ocular anomalies, sensorineural hearing loss and developmental delay. By studying multiplex families, we mapped this disorder to chromosome 2q23.3-31.1 and identified LRP2 mutations in six families with Donnai-Barrow syndrome and one family with facio-oculo-acoustico-renal syndrome. LRP2 encodes megalin, a multiligand uptake receptor that regulates levels of diverse circulating compounds. This work implicates a pathway with potential pharmacological therapeutic targets.


Asunto(s)
Anomalías Múltiples/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Agenesia del Cuerpo Calloso , Cromosomas Humanos Par 2 , Anomalías Craneofaciales/genética , Enfermedades Hereditarias del Ojo/genética , Familia , Pérdida Auditiva Sensorineural/genética , Hernia Diafragmática/genética , Humanos , Riñón/anomalías , Mutación , Síndrome
6.
Ann Rheum Dis ; 74(6): 1249-56, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24442880

RESUMEN

OBJECTIVES: Leri's pleonosteosis (LP) is an autosomal dominant rheumatic condition characterised by flexion contractures of the interphalangeal joints, limited motion of multiple joints, and short broad metacarpals, metatarsals and phalanges. Scleroderma-like skin thickening can be seen in some individuals with LP. We undertook a study to characterise the phenotype of LP and identify its genetic basis. METHODS AND RESULTS: Whole-genome single-nucleotide polymorphism genotyping in two families with LP defined microduplications of chromosome 8q22.1 as the cause of this condition. Expression analysis of dermal fibroblasts from affected individuals showed overexpression of two genes, GDF6 and SDC2, within the duplicated region, leading to dysregulation of genes that encode proteins of the extracellular matrix and downstream players in the transforming growth factor (TGF)-ß pathway. Western blot analysis revealed markedly decreased inhibitory SMAD6 levels in patients with LP. Furthermore, in a cohort of 330 systemic sclerosis cases, we show that the minor allele of a missense SDC2 variant, p.Ser71Thr, could confer protection against disease (p<1×10(-5)). CONCLUSIONS: Our work identifies the genetic cause of LP in these two families, demonstrates the phenotypic range of the condition, implicates dysregulation of extracellular matrix homoeostasis genes in its pathogenesis, and highlights the link between TGF-ß/SMAD signalling, growth/differentiation factor 6 and syndecan-2. We propose that LP is an additional member of the growing 'TGF-ß-pathies' group of musculoskeletal disorders, which includes Myhre syndrome, acromicric dysplasia, geleophysic dysplasias, Weill-Marchesani syndromes and stiff skin syndrome. Identification of a systemic sclerosis-protective SDC2 variant lays the foundation for exploration of the role of syndecan-2 in systemic sclerosis in the future.


Asunto(s)
Cromosomas Humanos Par 8/genética , Duplicación de Gen , Factor 6 de Diferenciación de Crecimiento/genética , Deformidades Congénitas de la Mano/genética , Artropatías/congénito , Osificación Heterotópica/genética , Esclerodermia Sistémica/genética , Sindecano-2/genética , Adulto , Anciano , Preescolar , Matriz Extracelular/metabolismo , Facies , Femenino , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Factor 6 de Diferenciación de Crecimiento/metabolismo , Deformidades Congénitas de la Mano/metabolismo , Deformidades Congénitas de la Mano/fisiopatología , Humanos , Lactante , Artropatías/genética , Artropatías/metabolismo , Artropatías/fisiopatología , Masculino , Persona de Mediana Edad , Osificación Heterotópica/metabolismo , Osificación Heterotópica/fisiopatología , Fenotipo , Transducción de Señal , Sindecano-2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Adulto Joven
7.
Am J Hum Genet ; 89(1): 148-53, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21737058

RESUMEN

3-M syndrome, a primordial growth disorder, is associated with mutations in CUL7 and OBSL1. Exome sequencing now identifies mutations in CCDC8 as a cause of 3-M syndrome. CCDC8 is a widely expressed gene that is transcriptionally associated to CUL7 and OBSL1, and coimmunoprecipitation indicates a physical interaction between CCDC8 and OBSL1 but not CUL7. We propose that CUL7, OBSL1, and CCDC8 are members of a pathway controlling mammalian growth.


Asunto(s)
Proteínas Cullin/genética , Proteínas del Citoesqueleto/genética , Enanismo/genética , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Línea Celular , Preescolar , Proteínas Cullin/metabolismo , Proteínas del Citoesqueleto/metabolismo , Femenino , Expresión Génica , Homocigoto , Humanos , Lactante , Masculino , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Columna Vertebral/anomalías , Factores de Transcripción
8.
Am J Hum Genet ; 89(5): 675-81, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22077973

RESUMEN

Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS or Ohdo syndrome) is a multiple anomaly syndrome characterized by severe intellectual disability, blepharophimosis, and a mask-like facial appearance. A number of individuals with SBBYSS also have thyroid abnormalities and cleft palate. The condition usually occurs sporadically and is therefore presumed to be due in most cases to new dominant mutations. In individuals with SBBYSS, a whole-exome sequencing approach was used to demonstrate de novo protein-truncating mutations in the highly conserved histone acetyltransferase gene KAT6B (MYST4/MORF)) in three out of four individuals sequenced. Sanger sequencing was used to confirm truncating mutations of KAT6B, clustering in the final exon of the gene in all four individuals and in a further nine persons with typical SBBYSS. Where parental samples were available, the mutations were shown to have occurred de novo. During mammalian development KAT6B is upregulated specifically in the developing central nervous system, facial structures, and limb buds. The phenotypic features seen in the Qkf mouse, a hypomorphic Kat6b mutant, include small eyes, ventrally placed ears and long first digits that mirror the human phenotype. This is a further example of how perturbation of a protein involved in chromatin modification might give rise to a multisystem developmental disorder.


Asunto(s)
Codón sin Sentido/genética , Hipotiroidismo Congénito/genética , Exoma/genética , Histona Acetiltransferasas , Discapacidad Intelectual/genética , Anomalías Múltiples/genética , Adulto , Animales , Blefarofimosis/genética , Niño , Cromatina/metabolismo , Cromosomas Humanos Par 10/genética , Facies , Femenino , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas , Histona Acetiltransferasas/deficiencia , Histona Acetiltransferasas/genética , Humanos , Mutación INDEL/genética , Inestabilidad de la Articulación , Masculino , Errores Innatos del Metabolismo/genética , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Polimorfismo de Nucleótido Simple/genética
9.
Hum Mutat ; 34(2): 296-300, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23086778

RESUMEN

Kohlschütter-Tönz syndrome (KTS) is a rare autosomal recessive disorder characterized by amelogenesis imperfecta, psychomotor delay or regression and seizures starting early in childhood. KTS was established as a distinct clinical entity after the first report by Kohlschütter in 1974, and to date, only a total of 20 pedigrees have been reported. The genetic etiology of KTS remained elusive until recently when mutations in ROGDI were independently identified in three unrelated families and in five likely related Druze families. Herein, we report a clinical and genetic study of 10 KTS families. By using a combination of whole exome sequencing, linkage analysis, and Sanger sequencing, we identify novel homozygous or compound heterozygous ROGDI mutations in five families, all presenting with a typical KTS phenotype. The other families, mostly presenting with additional atypical features, were negative for ROGDI mutations, suggesting genetic heterogeneity of atypical forms of the disease.


Asunto(s)
Amelogénesis Imperfecta/genética , Demencia/genética , Epilepsia/genética , Heterogeneidad Genética , Proteínas de la Membrana/genética , Proteínas Nucleares/genética , Preescolar , Exoma , Femenino , Eliminación de Gen , Ligamiento Genético , Humanos , Lactante , Masculino , Mutación , Linaje , Fenotipo , Análisis de Secuencia de ADN
10.
Am J Hum Genet ; 86(6): 963-9, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20560210

RESUMEN

Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction.


Asunto(s)
Facies , Glucuronidasa/genética , Enfermedades Urológicas/genética , Encéfalo/metabolismo , Niño , Preescolar , Mapeo Cromosómico , Cromosomas Humanos Par 10 , Femenino , Genes Recesivos , Glucuronidasa/química , Glucuronidasa/metabolismo , Humanos , Masculino , Modelos Moleculares , Músculos/metabolismo , Mutación , Linaje , Síndrome , Vejiga Urinaria/metabolismo
11.
Nat Genet ; 36(4): 411-6, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15004558

RESUMEN

Lenz microphthalmia is inherited in an X-linked recessive pattern and comprises microphthalmia, mental retardation, and skeletal and other anomalies. Two loci associated with this syndrome, MAA (microphthalmia with associated anomalies) and MAA2, are situated respectively at Xq27-q28 (refs. 1,2) and Xp11.4-p21.2 (ref. 3). We identified a substitution, nt 254C-->T; P85L, in BCOR (encoding BCL-6-interacting corepressor, BCOR) in affected males from the family with Lenz syndrome previously used to identify the MAA2 locus. Oculofaciocardiodental syndrome (OFCD; OMIM 300166) is inherited in an X-linked dominant pattern with presumed male lethality and comprises microphthalmia, congenital cataracts, radiculomegaly, and cardiac and digital abnormalities. Given their phenotypic overlap, we proposed that OFCD and MAA2-associated Lenz microphthalmia were allelic, and we found different frameshift, deletion and nonsense mutations in BCOR in seven families affected with OFCD. Like wild-type BCOR, BCOR P85L and an OFCD-mutant form of BCOR can interact with BCL-6 and efficiently repress transcription. This indicates that these syndromes are likely to result from defects in alternative functions of BCOR, such as interactions with transcriptional partners other than BCL-6. We cloned the zebrafish (Danio rerio) ortholog of BCOR and found that knock-down of this ortholog caused developmental perturbations of the eye, skeleton and central nervous system consistent with the human syndromes, confirming that BCOR is a key transcriptional regulator during early embryogenesis.


Asunto(s)
Anomalías Múltiples/genética , Anomalías del Ojo/genética , Cardiopatías Congénitas/genética , Mutación , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Secuencia de Aminoácidos , Animales , Compensación de Dosificación (Genética) , Cara/anomalías , Humanos , Datos de Secuencia Molecular , Proteínas Proto-Oncogénicas/química , Proteínas Represoras/química , Homología de Secuencia de Aminoácido , Síndrome , Anomalías Dentarias/genética , Cromosoma X , Pez Cebra
12.
HGG Adv ; 3(1): 100074, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35047859

RESUMEN

Robinow syndrome (RS) is a genetically heterogeneous disorder with six genes that converge on the WNT/planar cell polarity (PCP) signaling pathway implicated (DVL1, DVL3, FZD2, NXN, ROR2, and WNT5A). RS is characterized by skeletal dysplasia and distinctive facial and physical characteristics. To further explore the genetic heterogeneity, paralog contribution, and phenotypic variability of RS, we investigated a cohort of 22 individuals clinically diagnosed with RS from 18 unrelated families. Pathogenic or likely pathogenic variants in genes associated with RS or RS phenocopies were identified in all 22 individuals, including the first variant to be reported in DVL2. We retrospectively collected medical records of 16 individuals from this cohort and extracted clinical descriptions from 52 previously published cases. We performed Human Phenotype Ontology (HPO) based quantitative phenotypic analyses to dissect allele-specific phenotypic differences. Individuals with FZD2 variants clustered into two groups with demonstrable phenotypic differences between those with missense and truncating alleles. Probands with biallelic NXN variants clustered together with the majority of probands carrying DVL1, DVL2, and DVL3 variants, demonstrating no phenotypic distinction between the NXN-autosomal recessive and dominant forms of RS. While phenotypically similar diseases on the RS differential matched through HPO analysis, clustering using phenotype similarity score placed RS-associated phenotypes in a unique cluster containing WNT5A, FZD2, and ROR2 apart from non-RS-associated paralogs. Through human phenotype analyses of this RS cohort and OMIM clinical synopses of Mendelian disease, this study begins to tease apart specific biologic roles for non-canonical WNT-pathway proteins.

13.
Am J Med Genet A ; 155A(9): 2203-11, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21834056

RESUMEN

Pierpont syndrome is a multiple congenital anomaly syndrome with learning disability first described in 1998. There are only three patients with Pierpont syndrome who have previously been published in the literature. Details of a series of patients with features of this condition were therefore obtained retrospectively to better characterize its key features. These patients were noted to have distinctive shared facial characteristics, in addition to plantar fat pads and other limb abnormalities. Further individuals with equally striking hand and foot findings were identified whose facies were less characteristic, and hence we considered them unlikely to be affected with the same condition. Despite several patients with possible Pierpont syndrome having had high-resolution array CGH or SNP array, the etiology of this phenotype remains unknown. Whilst it is as yet unclear whether it is a single entity, there appears to be a group of patients in whom Pierpont syndrome may be a recognizable condition, with typical facies, particularly when smiling, and characteristic hand and foot findings.


Asunto(s)
Anomalías Múltiples/genética , Discapacidades para el Aprendizaje/genética , Adulto , Niño , Preescolar , Anomalías Craneofaciales/genética , Discapacidades del Desarrollo , Cara/anomalías , Facies , Femenino , Deformidades Congénitas del Pie/genética , Deformidades Congénitas de la Mano/genética , Humanos , Cariotipo , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Retrospectivos , Síndrome
14.
Am J Med Genet A ; 155A(7): 1511-6, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21671394

RESUMEN

Kabuki syndrome is a rare, multiple malformation disorder characterized by a distinctive facial appearance, cardiac anomalies, skeletal abnormalities, and mild to moderate intellectual disability. Simplex cases make up the vast majority of the reported cases with Kabuki syndrome, but parent-to-child transmission in more than a half-dozen instances indicates that it is an autosomal dominant disorder. We recently reported that Kabuki syndrome is caused by mutations in MLL2, a gene that encodes a Trithorax-group histone methyltransferase, a protein important in the epigenetic control of active chromatin states. Here, we report on the screening of 110 families with Kabuki syndrome. MLL2 mutations were found in 81/110 (74%) of families. In simplex cases for which DNA was available from both parents, 25 mutations were confirmed to be de novo, while a transmitted MLL2 mutation was found in two of three familial cases. The majority of variants found to cause Kabuki syndrome were novel nonsense or frameshift mutations that are predicted to result in haploinsufficiency. The clinical characteristics of MLL2 mutation-positive cases did not differ significantly from MLL2 mutation-negative cases with the exception that renal anomalies were more common in MLL2 mutation-positive cases. These results are important for understanding the phenotypic consequences of MLL2 mutations for individuals and their families as well as for providing a basis for the identification of additional genes for Kabuki syndrome.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de Unión al ADN/genética , Enfermedades Hematológicas/genética , Mutación/genética , Proteínas de Neoplasias/genética , Enfermedades Vestibulares/genética , Anomalías Múltiples/diagnóstico , Alelos , Cara/anomalías , Orden Génico , Pruebas Genéticas , Genotipo , Enfermedades Hematológicas/diagnóstico , Humanos , Fenotipo , Pronóstico , Enfermedades Vestibulares/diagnóstico
15.
Hum Mutat ; 31(10): 1142-54, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20672375

RESUMEN

A range of phenotypes including Greig cephalopolysyndactyly and Pallister-Hall syndromes (GCPS, PHS) are caused by pathogenic mutation of the GLI3 gene. To characterize the clinical variability of GLI3 mutations, we present a subset of a cohort of 174 probands referred for GLI3 analysis. Eighty-one probands with typical GCPS or PHS were previously reported, and we report the remaining 93 probands here. This includes 19 probands (12 mutations) who fulfilled clinical criteria for GCPS or PHS, 48 probands (16 mutations) with features of GCPS or PHS but who did not meet the clinical criteria (sub-GCPS and sub-PHS), 21 probands (6 mutations) with features of PHS or GCPS and oral-facial-digital syndrome, and 5 probands (1 mutation) with nonsyndromic polydactyly. These data support previously identified genotype-phenotype correlations and demonstrate a more variable degree of severity than previously recognized. The finding of GLI3 mutations in patients with features of oral-facial-digital syndrome supports the observation that GLI3 interacts with cilia. We conclude that the phenotypic spectrum of GLI3 mutations is broader than that encompassed by the clinical diagnostic criteria, but the genotype-phenotype correlation persists. Individuals with features of either GCPS or PHS should be screened for mutations in GLI3 even if they do not fulfill clinical criteria.


Asunto(s)
Anomalías Múltiples/genética , Factores de Transcripción de Tipo Kruppel/genética , Mutación , Proteínas del Tejido Nervioso/genética , Síndrome de Pallister-Hall/patología , Polidactilia/patología , Sindactilia/patología , Anomalías Craneofaciales/genética , Genotipo , Humanos , Anomalías de la Boca/genética , Síndrome de Pallister-Hall/genética , Fenotipo , Polidactilia/genética , Sindactilia/genética , Proteína Gli3 con Dedos de Zinc
16.
Front Mol Neurosci ; 13: 12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116545

RESUMEN

Multiple TREX mRNA export complex subunits (e.g., THOC1, THOC2, THOC5, THOC6, THOC7) have now been implicated in neurodevelopmental disorders (NDDs), neurodegeneration and cancer. We previously implicated missense and splicing-defective THOC2 variants in NDDs and a broad range of other clinical features. Here we report 10 individuals from nine families with rare missense THOC2 variants including the first case of a recurrent variant (p.Arg77Cys), and an additional individual with an intragenic THOC2 microdeletion (Del-Ex37-38). Ex vivo missense variant testing and patient-derived cell line data from current and published studies show 9 of the 14 missense THOC2 variants result in reduced protein stability. The splicing-defective and deletion variants result in a loss of small regions of the C-terminal THOC2 RNA binding domain (RBD). Interestingly, reduced stability of THOC2 variant proteins has a flow-on effect on the stability of the multi-protein TREX complex; specifically on the other NDD-associated THOC subunits. Our current, expanded cohort refines the core phenotype of THOC2 NDDs to language disorder and/or ID, with a variable severity, and disorders of growth. A subset of affected individuals' has severe-profound ID, persistent hypotonia and respiratory abnormalities. Further investigations to elucidate the pathophysiological basis for this severe phenotype are warranted.

17.
Hum Mutat ; 29(8): 1017-27, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18425797

RESUMEN

Klippel-Feil syndrome (KFS) is a congenital disorder of spinal segmentation distinguished by the bony fusion of anterior/cervical vertebrae. Scoliosis, mirror movements, otolaryngological, kidney, ocular, cranial, limb, and/or digit anomalies are often associated. Here we report mutations at the GDF6 gene locus in familial and sporadic cases of KFS including the recurrent missense mutation of an extremely conserved residue c.866T>C (p.Leu289Pro) in association with mirror movements and an inversion breakpoint downstream of the gene in association with carpal, tarsal, and vertebral fusions. GDF6 is expressed at the boundaries of the developing carpals, tarsals, and vertebrae and within the adult vertebral disc. GDF6 knockout mice are best distinguished by fusion of carpals and tarsals and GDF6 knockdown in Xenopus results in a high incidence of anterior axial defects consistent with a role for GDF6 in the etiology, diversity, and variability of KFS.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Síndrome de Klippel-Feil/genética , Secuencia de Aminoácidos , Animales , Proteínas Morfogenéticas Óseas/química , Inversión Cromosómica , Análisis Mutacional de ADN , Femenino , Factor 6 de Diferenciación de Crecimiento , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Mutación Missense , Linaje , Alineación de Secuencia , Columna Vertebral/anomalías , Xenopus laevis
18.
Eur J Hum Genet ; 16(12): 1467-76, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18596695

RESUMEN

There is limited evidence about what process attributes of clinical genetics services may be highly valued by patients and service providers. The aim in this qualitative grounded theory study was to explore what process attributes may be highly valued by those stakeholders. Seven focus groups (n=33) and nineteen one-to-one interviews were conducted (total sample size=52). Five process attributes were identified as highly valued by patients and health professionals: (1) local and accessible services (2) open access and follow-up, (3) coordinated, tailored family care, (4) quality of the patient-clinician relationship and (5) time to talk. These findings will be useful in designing models of service delivery that could be tested in intervention studies.


Asunto(s)
Atención a la Salud/métodos , Servicios Genéticos , Satisfacción del Paciente , Algoritmos , Comunicación , Grupos Focales , Estudios de Seguimiento , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Humanos , Entrevistas como Asunto , Modelos Biológicos , Evaluación de Resultado en la Atención de Salud , Relaciones Médico-Paciente , Calidad de la Atención de Salud
19.
Am J Med Genet A ; 146A(14): 1842-7, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18553518

RESUMEN

Donnai-Barrow syndrome [Faciooculoacousticorenal (FOAR) syndrome; DBS/FOAR] is a rare autosomal recessive disorder resulting from mutations in the LRP2 gene located on chromosome 2q31.1. We report a unique DBS/FOAR patient homozygous for a 4-bp LRP2 deletion secondary to paternal uniparental isodisomy for chromosome 2. The propositus inherited the mutation from his heterozygous carrier father, whereas the mother carried only wild-type LRP2 alleles. This is the first case of DBS/FOAR resulting from uniparental disomy (UPD) and the fourth published case of any paternal UPD 2 ascertained through unmasking of an autosomal recessive disorder. The absence of clinical symptoms above and beyond the classical phenotype in this and the other disorders suggests that paternal chromosome 2 is unlikely to contain imprinted genes notably affecting either growth or development. This report highlights the importance of parental genotyping in order to give accurate genetic counseling for autosomal recessive disorders.


Asunto(s)
Anomalías Múltiples/genética , Cromosomas Humanos Par 2/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Disomía Uniparental/genética , Adulto , Agenesia del Cuerpo Calloso , Secuencia de Bases , Niño , ADN/genética , Encefalocele/genética , Femenino , Pérdida Auditiva Sensorineural/genética , Hernia Inguinal/congénito , Hernia Inguinal/genética , Homocigoto , Humanos , Hipertelorismo/genética , Masculino , Mutación , Miopía/genética , Linaje , Proteinuria/genética , Eliminación de Secuencia , Síndrome
20.
Value Health ; 11(3): 497-508, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18489673

RESUMEN

OBJECTIVE: This systematic review aimed to inform researchers and policymakers about what validated outcome measures are available to evaluate clinical genetics services (CGS) and the need for new measures. METHODS: Validated outcome measures used to evaluate CGS were identified from a systematic literature review. Subjective outcome measures were assumed to have been validated only if some form of psychometric assessment was reported. RESULTS: A total of 1688 titles and abstracts were identified, and 61 articles met the inclusion criteria for the final review, which covered 67 validated outcome measures. There were 37 nongenetics-specific and 30 genetics-specific measures identified. No single validated outcome measure encompassed all potential patient benefits from using a CGS. A variety of different domains were identified, including anxiety and depression, coping, decision-making, distress, family environment, health status, knowledge, mood, perception of risk, perceived personal control, psychological impact, quality of life, satisfaction and expectations, self-esteem, spiritual well-being, and worry. Some important aspects of patient benefit from CGS are not covered by existing outcome measures. CONCLUSIONS: New research is necessary to develop the array of outcome measures required to quantify the benefits CGS offer patients living with the effects of genetic conditions. These need to be suitable for use in prospective evaluation studies to provide robust evidence for decision-makers to inform service development and commissioning. This includes prioritization of the existing validated outcome measures in terms of their usefulness and relevance to the measurement and valuation of patient benefits from a CGS.


Asunto(s)
Servicios Genéticos/organización & administración , Evaluación de Resultado en la Atención de Salud , Investigación sobre Servicios de Salud , Humanos , Psicometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA