Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioresour Technol ; 384: 129338, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37343796

RESUMEN

Pelleting of lignocellulosic biomass to improve its transportation, storage and handling impacts subsequent processing and conversion. This work reports the role of high moisture pelleting in the enzymatic digestibility of corn stover prior to pretreatment, together with associated substrate characteristics. Pelleting increases the digestibility of unpretreated corn stover, from 8.2 to 15.5% glucan conversion, at 5% solid loading using 1 FPU Cellic® CTec2 per g solids. Compositional analysis indicates that loose and pelleted corn stover have similar non-dissolvable compositions, although their extractives are different. Enzymatic hydrolysis of corn stover after size reduction to normalize particle sizes and removal of extractives confirms that pelleting improves corn stover digestibility. Such differences may be explained by the decreased particle size, improved substrate accessibility, and hydrolysis of cross-linking structures induced by pelleting. These findings are useful for the development of processing schemes for sustainable and efficient use of lignocellulose.


Asunto(s)
Celulasa , Zea mays , Zea mays/química , Celulasa/química , Hidrólisis , Biomasa
2.
Bioresour Technol ; 341: 125773, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34419879

RESUMEN

The movement of solid material into and between unit operations within a biorefinery is a bottleneck in reaching design capacity, with formation of biomass slurries needed to introduce feedstock. Corn stover slurries have been achieved from dilute acid, pretreated materials resulting in slurry concentrations of up to about 150 g/L, above which flowability is compromised. We report a new strategy to liquefy corn stover at higher solids concentration (300 g/L) by initially cooking it with the enzyme mimetic maleic acid at 40 mM and 150 °C. This is followed by 6 h of enzymatic modification at 1 FPU (2.2 mg protein)/g solids, resulting in a yield stress of 171 Pa after 6 h and 58 Pa in 48 h compared to 6806 Pa for untreated stover. Mimetic treatment of corn stover pellets minimizes the inhibitory effect of xylo-oligomers on hydrolytic enzymes. This strategy allows for the delivery of solid lignocellulosic slurry into a pretreatment reactor by pumping, improving operability of a biorefinery.


Asunto(s)
Ácidos , Zea mays , Biomasa , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA