RESUMEN
Female infertility has a multifactorial origin, and exposure to contaminants, including pesticides, with endocrine-disrupting properties is considered to be involved in this reproductive disorder, especially when it occurs during early life. Pesticides are present in various facets of the environment, and consumers are exposed to a combination of multiple pesticide residues through food intake. The consequences of such exposure with respect to female fertility are not well known. Therefore, we aimed to assess the impact of pre- and postnatal dietary exposure to a pesticide mixture on folliculogenesis, a crucial process in female reproduction. Mice were exposed to the acceptable daily intake levels of six pesticides in a mixture (boscalid, captan, chlorpyrifos, thiacloprid, thiophanate and ziram) from foetal development until 8 weeks old. Female offspring presented with decreased body weight at weaning, which was maintained at 8 weeks old. This was accompanied by an abnormal ovarian ultrastructure, a drastic decrease in the number of corpora lutea and progesterone levels and an increase in ovary cell proliferation. In conclusion, this study shows that this pesticide mixture that can be commonly found in fruits in Europe, causing endocrine disruption in female mice with pre- and postnatal exposure by disturbing folliculogenesis, mainly in the luteinisation process.
Asunto(s)
Cloropirifos , Residuos de Plaguicidas , Plaguicidas , Animales , Cloropirifos/toxicidad , Exposición Dietética , Femenino , Frutas/química , Ratones , Residuos de Plaguicidas/análisis , Plaguicidas/química , Plaguicidas/toxicidadRESUMEN
Obesity, which is a worldwide public health issue, is associated with chronic inflammation that contribute to long-term complications, including insulin resistance, type 2 diabetes and non-alcoholic fatty liver disease. We hypothesized that obesity may also influence the sensitivity to food contaminants, such as fumonisin B1 (FB1), a mycotoxin produced mainly by the Fusarium verticillioides. FB1, a common contaminant of corn, is the most abundant and best characterized member of the fumonisins family. We investigated whether diet-induced obesity could modulate the sensitivity to oral FB1 exposure, with emphasis on gut health and hepatotoxicity. Thus, metabolic effects of FB1 were assessed in obese and non-obese male C57BL/6J mice. Mice received a high-fat diet (HFD) or normal chow diet (CHOW) for 15 weeks. Then, during the last three weeks, mice were exposed to these diets in combination or not with FB1 (10 mg/kg body weight/day) through drinking water. As expected, HFD feeding induced significant body weight gain, increased fasting glycemia, and hepatic steatosis. Combined exposure to HFD and FB1 resulted in body weight loss and a decrease in fasting blood glucose level. This co-exposition also induces gut dysbiosis, an increase in plasma FB1 level, a decrease in liver weight and hepatic steatosis. Moreover, plasma transaminase levels were significantly increased and associated with liver inflammation in HFD/FB1-treated mice. Liver gene expression analysis revealed that the combined exposure to HFD and FB1 was associated with reduced expression of genes involved in lipogenesis and increased expression of immune response and cell cycle-associated genes. These results suggest that, in the context of obesity, FB1 exposure promotes gut dysbiosis and severe liver inflammation. To our knowledge, this study provides the first example of obesity-induced hepatitis in response to a food contaminant.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Diabetes Mellitus Tipo 2 , Fumonisinas , Ratones , Masculino , Animales , Fumonisinas/toxicidad , Fumonisinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Disbiosis , Ratones Endogámicos C57BL , Hígado/metabolismo , Obesidad/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Inflamación/inducido químicamenteRESUMEN
Fumonisin B1 (FB1) is a widespread mycotoxin produced by fungal Fusarium species-mainly in maize, one of the plants most commonly used for food and feed. Pigs and horses are the animal species most susceptible to this mycotoxin. FB1 exposure can cause highly diverse clinical symptoms, including hepatotoxicity, immunotoxicity, and intestinal barrier function disturbance. Inhibition of ceramide synthetase is a well-understood ubiquitous molecular mechanism of FB1 toxicity, but other more tissue-specific effects remain to be elucidated. To investigate the effects of FB1 in different exposed tissues, we cross-analyzed the transcriptomes of fours organs: liver, jejunum, jejunal Peyer's patches, and spleen. During a four-week study period, pigs were fed a control diet or a FB1-contaminated diet (10 mg/kg feed). In response to oral FB1 exposure, we observed common biological processes in the four organs, including predominant and recurrent processes (extracellular matrix organization, integrin activation, granulocyte chemotaxis, neutrophil migration, and lipid and sterol homeostasis), as well as more tissue-specific processes that appeared to be related to lipid outcomes (cell cycle regulation in jejunum, and gluconeogenesis in liver).
Asunto(s)
Fumonisinas/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedades de los Porcinos/inducido químicamente , Administración Oral , Animales , Estudio de Asociación del Genoma Completo , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ganglios Linfáticos Agregados/efectos de los fármacos , Ganglios Linfáticos Agregados/metabolismo , PorcinosRESUMEN
Liver physiology is circadian and sensitive to feeding and insulin. Food intake regulates insulin secretion and is a dominant signal for the liver clock. However, how much insulin contributes to the effect of feeding on the liver clock and rhythmic gene expression remains to be investigated. Insulin action partly depends on changes in insulin receptor (IR)-dependent gene expression. Here, we use hepatocyte-restricted gene deletion of IR to evaluate its role in the regulation and oscillation of gene expression as well as in the programming of the circadian clock in the adult mouse liver. We find that, in the absence of IR, the rhythmicity of core-clock gene expression is altered in response to day-restricted feeding. This change in core-clock gene expression is associated with defective reprogramming of liver gene expression. Our data show that an intact hepatocyte insulin receptor is required to program the liver clock and associated rhythmic gene expression.
Asunto(s)
Factores de Transcripción ARNTL , Relojes Circadianos , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Expresión Génica , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Ratones , Receptor de Insulina/genética , Receptor de Insulina/metabolismoRESUMEN
BACKGROUND: We recently demonstrated that chronic dietary exposure to a mixture of pesticides at low-doses induced sexually dimorphic obesogenic and diabetogenic effects in adult mice. Perinatal pesticide exposure may also be a factor in metabolic disease etiology. However, the long-term consequences of perinatal pesticide exposure remain controversial and largely unexplored. OBJECTIVES: Here we assessed how perinatal exposure to the same low-dose pesticide cocktail impacted metabolic homeostasis in adult mice. METHODS: Six pesticides (boscalid, captan, chlopyrifos, thiachloprid, thiophanate, and ziram) were incorporated in food pellets. During the gestation and lactation periods, female (F0) mice were fed either a pesticide-free or a pesticide-enriched diet at doses exposing them to the tolerable daily intake (TDI) level for each compound, using a 1:1 body weight scaling from humans to mice. All male and female offsprings (F1) were then fed the pesticide-free diet until 18 weeks of age, followed by challenge with a pesticide-free high-fat diet (HFD) for 6 weeks. Metabolic parameters, including body weight, food and water consumption, glucose tolerance, and urinary and fecal metabolomes, were assessed over time. At the end of the experiment, we evaluated energetic metabolism and microbiota activity using biochemical assays, gene expression profiling, and 1H NMR-based metabolomics in the liver, urine, and feces. RESULTS: Perinatal pesticide exposure did not affect body weight or energy homeostasis in 6- and 14-week-old mice. As expected, HFD increased body weight and induced metabolic disorders as compared to a low-fat diet. However, HFD-induced metabolic perturbations were similar between mice with and without perinatal pesticide exposure. Interestingly, perinatal pesticide exposure induced time-specific and sex-specific alterations in the urinary and fecal metabolomes of adult mice, suggesting long-lasting changes in gut microbiota. CONCLUSIONS: Perinatal pesticide exposure induced sustained sexually dimorphic perturbations of the urinary and fecal metabolic fingerprints, but did not significantly influence the development of HFD-induced metabolic diseases.
Asunto(s)
Microbioma Gastrointestinal , Plaguicidas , Animales , Dieta Alta en Grasa/efectos adversos , Heces , Femenino , Ratones , Ratones Endogámicos C57BL , Plaguicidas/toxicidadRESUMEN
Fumonisins (FBs) are mycotoxins produced by Fusarium species that can contaminate human food and animal feed. Due to the harmful effects of FBs on animals, the European Union (EU) defined a recommendation of a maximum of 5 mg FBs (B1 + B2)/kg for complete feed for swine and 1 µg FBs/kg body weight per day as the tolerable daily intake for humans. The aim of this study was to evaluate the toxicity of dietary exposure to low doses of FBs, including a dose below the EU regulatory limits. Four groups of 24 weaned castrated male piglets were exposed to feed containing 0, 3.7, 8.1, and 12.2 mg/kg of FBs for 28 days; the impact was measured by biochemical analysis and histopathological observations. Dietary exposure to FBs at a low dose (3.7 mg/kg of feed) significantly increased the plasma sphinganine-to-sphingosine ratio. FBs-contaminated diets led to histological modifications in the intestine, heart, lung, lymphoid organs, kidney, and liver. The histological alterations in the heart and the intestine appeared at the lowest dose of FBs-contaminated diet (3.7 mg/kg feed) and in the kidney at the intermediate dose (8.1 mg/kg feed). At the highest dose tested (12.2 mg/kg feed), all the organs displayed histological alterations. This dose also induced biochemical modifications indicative of kidney and liver alterations. In conclusion, our data indicate that FBs-contaminated diets at doses below the EU regulatory limit cause histological lesions in several organs. This study suggests that EU recommendations for the concentration of FBs in animal feed, especially for swine, are not sufficiently protective and that regulatory doses should be modified for better protection of animal health.