Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 104(6): 1127-1138, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31155284

RESUMEN

Optimal lysosome function requires maintenance of an acidic pH maintained by proton pumps in combination with a counterion transporter such as the Cl-/H+ exchanger, CLCN7 (ClC-7), encoded by CLCN7. The role of ClC-7 in maintaining lysosomal pH has been controversial. In this paper, we performed clinical and genetic evaluations of two children of different ethnicities. Both children had delayed myelination and development, organomegaly, and hypopigmentation, but neither had osteopetrosis. Whole-exome and -genome sequencing revealed a de novo c.2144A>G variant in CLCN7 in both affected children. This p.Tyr715Cys variant, located in the C-terminal domain of ClC-7, resulted in increased outward currents when it was heterologously expressed in Xenopus oocytes. Fibroblasts from probands displayed a lysosomal pH approximately 0.2 units lower than that of control cells, and treatment with chloroquine normalized the pH. Primary fibroblasts from both probands also exhibited markedly enlarged intracellular vacuoles; this finding was recapitulated by the overexpression of human p.Tyr715Cys CLCN7 in control fibroblasts, reflecting the dominant, gain-of-function nature of the variant. A mouse harboring the knock-in Clcn7 variant exhibited hypopigmentation, hepatomegaly resulting from abnormal storage, and enlarged vacuoles in cultured fibroblasts. Our results show that p.Tyr715Cys is a gain-of-function CLCN7 variant associated with developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged intracellular vacuoles. Our data supports the hypothesis that the ClC-7 antiporter plays a critical role in maintaining lysosomal pH.


Asunto(s)
Ácidos/química , Albinismo/etiología , Canales de Cloruro/genética , Fibroblastos/patología , Variación Genética , Enfermedades por Almacenamiento Lisosomal/etiología , Lisosomas/metabolismo , Albinismo/metabolismo , Albinismo/patología , Animales , Canales de Cloruro/fisiología , Femenino , Fibroblastos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Lactante , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Masculino , Ratones , Oocitos/metabolismo , Xenopus laevis
2.
Respir Res ; 23(1): 112, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35509004

RESUMEN

BACKGROUND: HPS-1 is a genetic type of Hermansky-Pudlak syndrome (HPS) with highly penetrant pulmonary fibrosis (HPSPF), a restrictive lung disease that is similar to idiopathic pulmonary fibrosis (IPF). Hps1ep/ep (pale ear) is a naturally occurring HPS-1 mouse model that exhibits high sensitivity to bleomycin-induced pulmonary fibrosis (PF). Traditional methods of administering bleomycin as an intratracheal (IT) route to induce PF in this model often lead to severe acute lung injury and high mortality rates, complicating studies focusing on pathobiological mechanisms or exploration of therapeutic options for HPSPF. METHODS: To develop a murine model of HPSPF that closely mimics the progression of human pulmonary fibrosis, we investigated the pulmonary effects of systemic delivery of bleomycin in Hps1ep/ep mice using a subcutaneous minipump and compared results to oropharyngeal delivery of bleomycin. RESULTS: Our study revealed that systemic delivery of bleomycin induced limited, acute inflammation that resolved. The distinct inflammatory phase preceded a slow, gradually progressive fibrogenesis that was shown to be both time-dependent and dose-dependent. The fibrosis phase exhibited characteristics that better resembles human disease with focal regions of fibrosis that were predominantly found in peribronchovascular areas and in subpleural regions; central lung areas contained relatively less fibrosis. CONCLUSION: This model provides a preclinical tool that will allow researchers to study the mechanism of pulmonary fibrosis in HPS and provide a platform for the development of therapeutics to treat HPSPF. This method can be applied on studies of IPF or other monogenic disorders that lead to pulmonary fibrosis.


Asunto(s)
Síndrome de Hermanski-Pudlak , Fibrosis Pulmonar Idiopática , Albinismo , Animales , Bleomicina/toxicidad , Modelos Animales de Enfermedad , Fibrosis , Trastornos Hemorrágicos , Síndrome de Hermanski-Pudlak/inducido químicamente , Síndrome de Hermanski-Pudlak/genética , Fibrosis Pulmonar Idiopática/patología , Pulmón , Ratones
3.
Am J Med Genet A ; 182(12): 3007-3013, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32990340

RESUMEN

Chediak-Higashi disease is a rare disease caused by bi-allelic mutations in the lysosomal trafficking regulator gene, LYST. Individuals typically present in early childhood with partial oculocutaneous albinism, a bleeding diathesis, recurrent infections secondary to immune dysfunction, and risk of developing hemophagocytic lymphohistiocytosis (HLH). Without intervention, mortality is high in the first decade of life. However, some individuals with milder phenotypes have attenuated hematologic and immunologic presentations, and lower risk of HLH. Both classic and milder phenotypes develop progressive neurodegeneration in early adulthood. Here we present a remarkable patient diagnosed with Chediak-Higashi disease at age 67, many decades after the diagnosis is usually established. Diagnosis was suspected by observing the pathognomonic granules within leukocytes, and confirmed by identification of bi-allelic mutations in LYST, reduced LYST mRNA expression, enlarged lysosomes within fibroblasts, and decreased NK cell lytic activity. This case further expands the phenotype of Chediak-Higashi disease and highlights the need for increased awareness. Individuals with milder phenotypes may escape early diagnosis, but identification is important for close monitoring of potential complications, and to further our understanding of the function of LYST.


Asunto(s)
Síndrome de Chediak-Higashi/diagnóstico , Mutación , Fenotipo , Proteínas de Transporte Vesicular/genética , Anciano , Alelos , Síndrome de Chediak-Higashi/genética , Femenino , Humanos
5.
Mol Genet Metab ; 114(1): 62-5, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25468649

RESUMEN

Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by oculocutaneous albinism, bleeding tendency and susceptibility to pulmonary fibrosis. No curative therapy is available. Genetic correction directed to the lungs, bone marrow and/or gastro-intestinal tract might provide alternative forms of treatment for the diseases multi-systemic complications. We demonstrate that lentiviral-mediated gene transfer corrects the expression and function of the HPS1 gene in patient dermal melanocytes, which opens the way to development of gene therapy for HPS.


Asunto(s)
Terapia Genética , Síndrome de Hermanski-Pudlak/terapia , Melanocitos/metabolismo , Proteínas de la Membrana/genética , Células Cultivadas , Expresión Génica , Vectores Genéticos , Factores de Intercambio de Guanina Nucleótido , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Lentivirus/genética , Melanocitos/ultraestructura , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Oxidorreductasas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Transducción Genética
6.
Am J Respir Cell Mol Biol ; 50(3): 605-13, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24134621

RESUMEN

The etiology of Hermansky-Pudlak syndrome (HPS) pulmonary fibrosis (HPSPF), a progressive interstitial lung disease with high mortality, is unknown. Galectin-3 is a ß-galactoside-binding lectin with profibrotic effects. The objective of this study was to investigate the involvement of galectin-3 in HPSPF. Galectin-3 was measured by ELISA, immunohistochemistry, and immunoblotting in human specimens from subjects with HPS and control subjects. Mechanisms of galectin-3 accumulation were studied by quantitative RT-PCR, Northern blot analysis, membrane biotinylation assays, and rescue of HPS1-deficient cells by transfection. Bronchoalveolar lavage galectin-3 concentrations were significantly higher in HPSPF compared with idiopathic pulmonary fibrosis or that from normal volunteers, and correlated with disease severity. Galectin-3 immunostaining was increased in HPSPF compared with idiopathic pulmonary fibrosis or normal lung tissue. Fibroblasts from subjects with HPS subtypes associated with pulmonary fibrosis had increased galectin-3 protein expression compared with cells from nonfibrotic HPS subtypes. Galectin-3 protein accumulation was associated with reduced Galectin-3 mRNA, normal Mucin 1 levels, and up-regulated microRNA-322 in HPSPF cells. Membrane biotinylation assays showed reduced galectin-3 and normal Mucin 1 expression at the plasma membrane in HPSPF cells compared with control cells, which suggests that galectin-3 is mistrafficked in these cells. Reconstitution of HPS1 cDNA into HPS1-deficient cells normalized galectin-3 protein and mRNA levels, as well as corrected galectin-3 trafficking to the membrane. Intracellular galectin-3 levels are regulated by HPS1 protein. Abnormal accumulation of galectin-3 may contribute to the pathogenesis of HPSPF.


Asunto(s)
Galectina 3/metabolismo , Síndrome de Hermanski-Pudlak/complicaciones , Pulmón/metabolismo , Fibrosis Pulmonar/etiología , Células Epiteliales Alveolares/metabolismo , Proteínas Sanguíneas , Líquido del Lavado Bronquioalveolar/química , Estudios de Casos y Controles , Células Cultivadas , Fibroblastos/metabolismo , Galectina 3/genética , Galectinas , Regulación de la Expresión Génica , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mucina-1/metabolismo , Transporte de Proteínas , Fibrosis Pulmonar/diagnóstico , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , ARN Mensajero/metabolismo , Índice de Severidad de la Enfermedad , Transfección
7.
Am J Hum Genet ; 88(6): 778-787, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21665000

RESUMEN

Hermansky-Pudlak Syndrome (HPS) is an autosomal-recessive condition characterized by oculocutaneous albinism and a bleeding diathesis due to absent platelet delta granules. HPS is a genetically heterogeneous disorder of intracellular vesicle biogenesis. We first screened all our patients with HPS-like symptoms for mutations in the genes responsible for HPS-1 through HPS-6 and found no functional mutations in 38 individuals. We then examined all eight genes encoding the biogenesis of lysosome-related organelles complex-1, or BLOC-1, proteins in these individuals. This identified a homozygous nonsense mutation in PLDN in a boy with characteristic features of HPS. PLDN is mutated in the HPS mouse model pallid and encodes the protein pallidin, which interacts with the early endosomal t-SNARE syntaxin-13. We could not detect any full-length pallidin in our patient's cells despite normal mRNA expression of the mutant transcript. We could detect an alternative transcript that would skip the exon that harbored the mutation, but we demonstrate that if this transcript is translated into protein, although it correctly localizes to early endosomes, it does not interact with syntaxin-13. In our patient's melanocytes, the melanogenic protein TYRP1 showed aberrant localization, an increase in plasma-membrane trafficking, and a failure to reach melanosomes, explaining the boy's severe albinism and establishing his diagnosis as HPS-9.


Asunto(s)
Proteínas Portadoras/genética , Síndrome de Hermanski-Pudlak/genética , Lectinas/genética , Proteínas del Tejido Nervioso/genética , Codón sin Sentido , Análisis Mutacional de ADN , Pruebas Genéticas , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular , Masculino , Melanocitos/enzimología , Glicoproteínas de Membrana/metabolismo , Oxidorreductasas/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo
8.
J Inherit Metab Dis ; 37(2): 297-308, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24136589

RESUMEN

BACKGROUND: UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) is a bifunctional enzyme responsible for the first committed steps in the synthesis of sialic acid, a common terminal monosaccharide in both protein and lipid glycosylation. GNE mutations are responsible for a rare autosomal recessive neuromuscular disorder, GNE myopathy (also called hereditary inclusion body myopathy). The connection between the impairment of sialic acid synthesis and muscle pathology in GNE myopathy remains poorly understood. METHODS: Glycosphingolipid (GSL) analysis was performed by HPLC in multiple models of GNE myopathy, including patients' fibroblasts and plasma, control fibroblasts with inhibited GNE epimerase activity through a novel imino sugar, and tissues of Gne(M712T/M712T) knock-in mice. RESULTS: Not only neutral GSLs, but also sialylated GSLs, were significantly increased compared to controls in all tested models of GNE myopathy. Treatment of GNE myopathy fibroblasts with N-acetylmannosamine (ManNAc), a sialic acid precursor downstream of GNE epimerase activity, ameliorated the increased total GSL concentrations. CONCLUSION: GNE myopathy models have increased total GSL concentrations. ManNAc supplementation results in decrease of GSL levels, linking abnormal increase of total GSLs in GNE myopathy to defects in the sialic acid biosynthetic pathway. These data advocate for further exploring GSL concentrations as an informative biomarker, not only for GNE myopathy, but also for other disorders of sialic acid metabolism.


Asunto(s)
Glicoesfingolípidos/metabolismo , Complejos Multienzimáticos/metabolismo , Enfermedades Musculares/metabolismo , Animales , Estudios de Casos y Controles , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Glicoesfingolípidos/sangre , Glicoesfingolípidos/genética , Hexosaminas/sangre , Hexosaminas/genética , Hexosaminas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Complejos Multienzimáticos/sangre , Complejos Multienzimáticos/genética , Músculos/metabolismo , Enfermedades Musculares/sangre , Enfermedades Musculares/genética , Mutación , Ácido N-Acetilneuramínico/sangre , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo
9.
Hum Genet ; 132(12): 1383-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23925499

RESUMEN

Two syndromic cognitive impairment disorders have very similar craniofacial dysmorphisms. One is caused by mutations of SATB2, a transcription regulator and the other by heterozygous mutations leading to premature stop codons in UPF3B, encoding a member of the nonsense-mediated mRNA decay complex. Here we demonstrate that the products of these two causative genes function in the same pathway. We show that the SATB2 nonsense mutation in our patient leads to a truncated protein that localizes to the nucleus, forms a dimer with wild-type SATB2 and interferes with its normal activity. This suggests that the SATB2 nonsense mutation has a dominant negative effect. The patient's leukocytes had significantly decreased UPF3B mRNA compared to controls. This effect was replicated both in vitro, where siRNA knockdown of SATB2 in HEK293 cells resulted in decreased UPF3B expression, and in vivo, where embryonic tissue of Satb2 knockout mice showed significantly decreased Upf3b expression. Furthermore, chromatin immunoprecipitation demonstrates that SATB2 binds to the UPF3B promoter, and a luciferase reporter assay confirmed that SATB2 expression significantly activates gene transcription using the UPF3B promoter. These findings indicate that SATB2 activates UPF3B expression through binding to its promoter. This study emphasizes the value of recognizing disorders with similar clinical phenotypes to explore underlying mechanisms of genetic interaction.


Asunto(s)
Trastornos del Conocimiento/genética , Anomalías Craneofaciales/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de Unión al ARN/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Noqueados , Fenotipo , Regiones Promotoras Genéticas , Síndrome , Factores de Transcripción/genética
10.
Development ; 137(15): 2587-96, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20627962

RESUMEN

Costeff Syndrome, which is caused by mutations in the OPTIC ATROPHY 3 (OPA3) gene, is an early-onset syndrome characterized by urinary excretion of 3-methylglutaconic acid (MGC), optic atrophy and movement disorders, including ataxia and extrapyramidal dysfunction. The OPA3 protein is enriched in the inner mitochondrial membrane and has mitochondrial targeting signals, but a requirement for mitochondrial localization has not been demonstrated. We find zebrafish opa3 mRNA to be expressed in the optic nerve and retinal layers, the counterparts of which in humans have high mitochondrial activity. Transcripts of zebrafish opa3 are also expressed in the embryonic brain, inner ear, heart, liver, intestine and swim bladder. We isolated a zebrafish opa3 null allele for which homozygous mutants display increased MGC levels, optic nerve deficits, ataxia and an extrapyramidal movement disorder. This correspondence of metabolic, ophthalmologic and movement abnormalities between humans and zebrafish demonstrates a phylogenetic conservation of OPA3 function. We also find that delivery of exogenous Opa3 can reduce increased MGC levels in opa3 mutants, and this reduction requires the mitochondrial localization signals of Opa3. By manipulating MGC precursor availability, we infer that elevated MGC in opa3 mutants derives from extra-mitochondrial HMG-CoA through a non-canonical pathway. The opa3 mutants have normal mitochondrial oxidative phosphorylation profiles, but are nonetheless sensitive to inhibitors of the electron transport chain, which supports clinical recommendations that individuals with Costeff Syndrome avoid mitochondria-damaging agents. In summary, this paper introduces a faithful Costeff Syndrome model and demonstrates a requirement for mitochondrial OPA3 to limit HMG-CoA-derived MGC and protect the electron transport chain against inhibitory compounds.


Asunto(s)
Glutaratos/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas/genética , Proteínas de Pez Cebra/genética , Acilcoenzima A/metabolismo , Alelos , Errores Innatos del Metabolismo de los Aminoácidos/genética , Animales , Modelos Animales de Enfermedad , Transporte de Electrón , Proteínas de la Membrana/genética , Mitocondrias/genética , Modelos Biológicos , Modelos Genéticos , Atrofia Óptica/genética , Fosforilación , Pez Cebra , Proteínas de Pez Cebra/metabolismo
11.
Front Genet ; 14: 1072784, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968585

RESUMEN

Introduction: Chediak-Higashi syndrome (CHS) is rare autosomal recessive disorder caused by bi-allelic variants in the Lysosomal Trafficking Regulator (LYST) gene. Diagnosis is established by the detection of pathogenic variants in LYST in combination with clinical evidence of disease. Conventional molecular genetic testing of LYST by genomic DNA (gDNA) Sanger sequencing detects the majority of pathogenic variants, but some remain undetected for several individuals clinically diagnosed with CHS. In this study, cDNA Sanger sequencing was pursued as a complementary method to identify variant alleles that are undetected by gDNA Sanger sequencing and to increase molecular diagnostic yield. Methods: Six unrelated individuals with CHS were clinically evaluated and included in this study. gDNA Sanger sequencing and cDNA Sanger sequencing were performed to identify pathogenic LYST variants. Results: Ten novel LYST alleles were identified, including eight nonsense or frameshift variants and two in-frame deletions. Six of these were identified by conventional gDNA Sanger sequencing; cDNA Sanger sequencing was required to identify the remaining variant alleles. Conclusion: By utilizing cDNA sequencing as a complementary technique to identify LYST variants, a complete molecular diagnosis was obtained for all six CHS patients. In this small CHS cohort, the molecular diagnostic yield was increased, and canonical splice site variants identified from gDNA Sanger sequencing were validated by cDNA sequencing. The identification of novel LYST alleles will aid in diagnosing patients and these molecular diagnoses will also lead to genetic counseling, access to services and treatments and clinical trials in the future.

12.
Mol Genet Metab ; 107(4): 748-55, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23122659

RESUMEN

GNE myopathy, previously termed hereditary inclusion body myopathy (HIBM), is an adult-onset neuromuscular disorder characterized by progressive muscle weakness. The disorder results from biallelic mutations in GNE, encoding UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, the key enzyme of sialic acid synthesis. GNE myopathy, associated with impaired glycan sialylation, has no approved therapy. Here we test potential sialylation-increasing monosaccharides for their effectiveness in prophylaxis (at the embryonic and neonatal stages) and therapy (after the onset of symptoms) by evaluating renal and muscle hyposialylation in a knock-in mouse model (Gne p.M712T) of GNE myopathy. We demonstrate that oral mannosamine (ManN), but not sialic acid (Neu5Ac), mannose (Man), galactose (Gal), or glucosamine (GlcN), administered to pregnant female mice has a similar prophylactic effect on renal hyposialylation, pathology and neonatal survival of mutant offspring, as previously shown for N-acetylmannosamine (ManNAc) therapy. ManN may be converted to ManNAc by a direct, yet unknown, pathway, or may act through another mode of action. The other sugars (Man, Gal, GlcN) may either not cross the placental barrier (Neu5Ac) and/or may not be able to directly increase sialylation. Because GNE myopathy patients will likely require treatment in adulthood after onset of symptoms, we also administered ManNAc (1 or 2g/kg/day for 12 weeks), Neu5Ac (2 g/kg/day for 12 weeks), or ManN (2 g/kg/day for 6 weeks) in drinking water to 6 month old mutant Gne p.M712T mice. All three therapies markedly improved the muscle and renal hyposialylation, as evidenced by lectin histochemistry for overall sialylation status and immunoblotting of specific sialoproteins. These preclinical data strongly support further evaluation of oral ManNAc, Neu5Ac and ManN as therapy for GNE myopathy and conceivably for certain glomerular diseases with hyposialylation.


Asunto(s)
Riñón/metabolismo , Monosacáridos/administración & dosificación , Músculos/metabolismo , Miositis por Cuerpos de Inclusión/congénito , Administración Oral , Animales , Femenino , Humanos , Riñón/patología , Riñón/ultraestructura , Ratones , Ratones Transgénicos , Complejos Multienzimáticos/genética , Músculos/patología , Miositis por Cuerpos de Inclusión/tratamiento farmacológico , Miositis por Cuerpos de Inclusión/genética , Miositis por Cuerpos de Inclusión/metabolismo , Ácido N-Acetilneuramínico/biosíntesis
13.
Mol Genet Metab ; 103(1): 44-50, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21371928

RESUMEN

Arterial Calcification due to Deficiency of CD73 (ACDC) results from mutations in the NT5E gene encoding the 5' exonucleotidase, CD73. We now describe the third familial case of ACDC, including radiological and histopathological details of the arterial calcifications. The medial lesions involve the entire circumference of the elastic lamina, in contrast to the intimal plaque-like disease of atherosclerosis. The demonstration of broken and fragmented elastic fibers leading to generalized vascular calcification suggests an analogy to pseudoxanthoma elasticum (PXE), which exhibits similar histopathology. Classical PXE is caused by deficiency of ABCC6, a C type ABC transporter whose ligand is unknown. Other C type ABC proteins transport nucleotides, so the newly described role of adenosine in inhibiting vascular calcification, along with the similarity of ACDC and PXE with respect to vascular pathology, suggests that adenosine may be the ligand for ABCC6.


Asunto(s)
5'-Nucleotidasa/deficiencia , Adenosina/metabolismo , Arterias/patología , Calcinosis/patología , Seudoxantoma Elástico/metabolismo , Seudoxantoma Elástico/patología , 5'-Nucleotidasa/genética , Adulto , Calcinosis/diagnóstico por imagen , Femenino , Fibroblastos/metabolismo , Proteínas Ligadas a GPI/deficiencia , Proteínas Ligadas a GPI/genética , Genotipo , Humanos , Modelos Biológicos , Mutación/genética , Seudoxantoma Elástico/diagnóstico por imagen , Radiografía
14.
J Biol Chem ; 284(46): 32116-25, 2009 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-19717842

RESUMEN

Lipolysis is an important metabolic pathway controlling energy homeostasis through degradation of triglycerides stored in lipid droplets and release of fatty acids. Lipid droplets of mammalian cells are coated with one or more members of the PAT protein family, which serve important functions in regulating lipolysis. In this study, we investigate the mechanisms by which PAT family members, perilipin A, adipose differentiation-related protein (ADFP), and LSDP5, control lipolysis catalyzed by hormone-sensitive lipase (HSL), a major lipase in adipocytes and several non-adipose cells. We applied fluorescence microscopic tools to analyze proteins in situ in cultured Chinese hamster ovary cells using fluorescence recovery after photobleaching and anisotropy Forster resonance energy transfer. Fluorescence recovery after photobleaching data show that ADFP and LSDP5 exchange between lipid droplet and cytoplasmic pools, whereas perilipin A does not. Differences in protein mobility do not correlate with PAT protein-mediated control of lipolysis catalyzed by HSL or endogenous lipases. Forster resonance energy transfer and co-immunoprecipitation experiments reveal that each of the three PAT proteins bind HSL through interaction of the lipase with amino acids within the highly conserved amino-terminal PAT-1 domain. ADFP and LSDP5 bind HSL under basal conditions, whereas phosphorylation of serine residues within three amino-terminal protein kinase A consensus sequences of perilipin A is required for HSL binding and maximal lipolysis. Finally, protein kinase A-mediated phosphorylation of HSL increases lipolysis in cells expressing ADFP or LSDP5; in contrast, phosphorylation of perilipin A exerts the major control over HSL-mediated lipolysis when perilipin is the main lipid droplet protein.


Asunto(s)
Lipólisis , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Esterol Esterasa/metabolismo , Animales , Western Blotting , Células CHO , Proteínas Portadoras , Cricetinae , Cricetulus , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Proteínas de la Membrana/genética , Perilipina-1 , Perilipina-2 , Perilipina-5 , Fosfoproteínas/genética , Fosforilación , Unión Proteica , Proteínas/genética , Triglicéridos/metabolismo
15.
Mol Genet Metab ; 100(2): 149-54, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20350831

RESUMEN

3-Methylglutaconic aciduria type III (3-MGCA type III), caused by recessive mutations in the 2-exon gene OPA3, is characterized by early-onset bilateral optic atrophy, later-onset extrapyramidal dysfunction, and increased urinary excretion of 3-methylglutaconic acid and 3-methylglutaric acid. Here we report the identification of a novel third OPA3 coding exon, the apparent product of a segmental duplication event, resulting in two gene transcripts, OPA3A and OPA3B. OPA3A deficiency (as in optic atrophy type 3) causes up-regulation of OPA3B. OPA3 protein function remains unknown, but it contains a putative mitochondrial leader sequence, mitochondrial sorting signal and a peroxisomal sorting signal. Our green fluorescent protein tagged OPA3 expression studies found its localization to be predominantly mitochondrial. These findings thus place the cellular metabolic defect of 3-MGCA type III in the mitochondrion rather than the peroxisome and implicate loss of OPA3A rather than gain of OPA3B in disease etiology.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Glutaratos/orina , Mitocondrias/genética , Atrofias Ópticas Hereditarias/genética , Proteínas/genética , Errores Innatos del Metabolismo de los Aminoácidos/orina , Secuencia de Aminoácidos , Exones , Humanos , Datos de Secuencia Molecular , Alineación de Secuencia
16.
Mol Genet Metab ; 101(1): 62-5, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20591709

RESUMEN

Griscelli syndrome (GS), a rare autosomal recessive disorder characterized by partial albinism and immunological impairment and/or severe neurological impairment, results from mutations in the MYO5A (GS1), RAB27A (GS2), or MLPH (GS3) genes. We identified a Hispanic patient born of a consanguineous union who presented with immunodeficiency, partial albinism, hepatic dysfunction, hemophagocytosis, neurological impairment, nystagmus, and silvery hair indicative of Griscelli Syndrome Type 2 (GS2). We screened for point mutations, but only exons 2-6 of the patient's DNA could be PCR-amplified. Whole genome analysis using the Illumina 1M-Duo DNA Analysis BeadChip identified a homozygous deletion in the patient's DNA. The exact breakpoints of the 47.5-kb deletion were identified as chr15q15-q21.1: g.53332432_53379990del (NCBI Build 37.1); the patient lacks the promoter and 5'UTR regions of RAB27A, thus confirming the diagnosis of GS2.


Asunto(s)
Eliminación de Secuencia/genética , Proteínas de Unión al GTP rab/genética , Secuencia de Bases , Humanos , Síndromes de Inmunodeficiencia/genética , Linfohistiocitosis Hemofagocítica , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Linaje , Piebaldismo/genética , Enfermedades de Inmunodeficiencia Primaria , Proteínas rab27 de Unión a GTP
17.
J Cell Biol ; 161(6): 1093-103, 2003 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-12810697

RESUMEN

Akey step in lipolytic activation of adipocytes is the translocation of hormone-sensitive lipase (HSL) from the cytosol to the surface of the lipid storage droplet. Adipocytes from perilipin-null animals have an elevated basal rate of lipolysis compared with adipocytes from wild-type mice, but fail to respond maximally to lipolytic stimuli. This defect is downstream of the beta-adrenergic receptor-adenylyl cyclase complex. Now, we show that HSL is basally associated with lipid droplet surfaces at a low level in perilipin nulls, but that stimulated translocation from the cytosol to lipid droplets is absent in adipocytes derived from embryonic fibroblasts of perilipin-null mice. We have also reconstructed the HSL translocation reaction in the nonadipocyte Chinese hamster ovary cell line by introduction of GFP-tagged HSL with and without perilipin A. On activation of protein kinase A, HSL-GFP translocates to lipid droplets only in cells that express fully phosphorylatable perilipin A, confirming that perilipin is required to elicit the HSL translocation reaction. Moreover, in Chinese hamster ovary cells that express both HSL and perilipin A, these two proteins cooperate to produce a more rapidly accelerated lipolysis than do cells that express either of these proteins alone, indicating that lipolysis is a concerted reaction mediated by both protein kinase A-phosphorylated HSL and perilipin A.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos , Lipólisis/genética , Fosfoproteínas/deficiencia , Esterol Esterasa/metabolismo , Animales , Células CHO , Proteínas Portadoras , Diferenciación Celular/fisiología , Cricetinae , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citosol/metabolismo , Fibroblastos/metabolismo , Ratones , Perilipina-1 , Fosfoproteínas/genética , Fosforilación , Transporte de Proteínas/genética , Proteínas Recombinantes de Fusión
18.
Mol Cell Biol ; 23(24): 8982-91, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14645511

RESUMEN

Three glycoproteins (ZP1, ZP2, and ZP3) are synthesized in growing mouse oocytes and secreted to form an extracellular zona pellucida that mediates sperm binding and fertilization. Each has a signal peptide to direct it into a secretory pathway, a "zona" domain implicated in matrix polymerization and a transmembrane domain from which the ectodomain must be released. Using confocal microscopy and enhanced green fluorescent protein (EGFP), the intracellular trafficking of ZP3 was observed in growing mouse oocytes. Replacement of the zona domain with EGFP did not prevent secretion of ZP3, suggesting the presence of trafficking signals and a cleavage site in the carboxyl terminus. Analysis of linker-scanning mutations of a ZP3-EGFP fusion protein in transient assays and in transgenic mice identified an eight-amino-acid hydrophobic region required for secretion and incorporation into the zona pellucida. The hydrophobic patch is conserved among mouse zona proteins and lies between a potential proprotein convertase (furin) cleavage site and the transmembrane domain. The cleavage site that releases the ectodomain from the transmembrane domain was defined by mass spectrometry of native zonae pellucidae and lies N-terminal to a proprotein convertase site that is distinct from the hydrophobic patch.


Asunto(s)
Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores de Superficie Celular , Zona Pelúcida/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Secuencia Conservada , Proteínas del Huevo/química , Femenino , Proteínas Fluorescentes Verdes , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Glicoproteínas de Membrana/química , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación , Oogénesis , Señales de Clasificación de Proteína/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Glicoproteínas de la Zona Pelúcida
19.
BMC Neurol ; 7: 3, 2007 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-17261181

RESUMEN

BACKGROUND: Hereditary Inclusion Body Myopathy (HIBM) is an autosomal recessive, adult onset, non-inflammatory neuromuscular disorder with no effective treatment. The causative gene, GNE, codes for UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, which catalyzes the first two reactions in the synthesis of sialic acid. Reduced sialylation of muscle glycoproteins, such as alpha-dystroglycan and neural cell adhesion molecule (NCAM), has been reported in HIBM. METHODS: We treated 4 HIBM patients with intravenous immune globulin (IVIG), in order to provide sialic acid, because IgG contains 8 micromol of sialic acid/g. IVIG was infused as a loading dose of 1 g/kg on two consecutive days followed by 3 doses of 400 mg/kg at weekly intervals. RESULTS: For all four patients, mean quadriceps strength improved from 19.0 kg at baseline to 23.2 kg (+22%) directly after IVIG loading to 25.6 kg (+35%) at the end of the study. Mean shoulder strength improved from 4.1 kg at baseline to 5.9 kg (+44%) directly after IVIG loading to 6.0 kg (+46%) at the end of the study. The composite improvement for 8 other muscle groups was 5% after the initial loading and 19% by the end of the study. Esophageal motility and lingual strength improved in the patients with abnormal barium swallows. Objective measures of functional improvement gave variable results, but the patients experienced improvements in daily activities that they considered clinically significant. Immunohistochemical staining and immunoblotting of muscle biopsies for alpha-dystroglycan and NCAM did not provide consistent evidence for increased sialylation after IVIG treatment. Side effects were limited to transient headaches and vomiting. CONCLUSION: The mild benefits in muscle strength experienced by HIBM patients after IVIG treatment may be related to the provision of sialic acid supplied by IVIG. Other sources of sialic acid are being explored as treatment options for HIBM.


Asunto(s)
Inmunoglobulinas Intravenosas/administración & dosificación , Miositis por Cuerpos de Inclusión/congénito , Miositis por Cuerpos de Inclusión/tratamiento farmacológico , Adulto , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Infusiones Intravenosas , Inyecciones Intravenosas , Masculino , Persona de Mediana Edad , Miositis por Cuerpos de Inclusión/diagnóstico , Proyectos Piloto , Resultado del Tratamiento
20.
Neurology ; 88(7): e57-e65, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28193763

RESUMEN

OBJECTIVE: To delineate the developmental and progressive neurodegenerative features in 9 young adults with the atypical form of Chediak-Higashi disease (CHD) enrolled in a natural history study. METHODS: Patients with atypical clinical features, but diagnostically confirmed CHD by standard evaluation of blood smears and molecular genotyping, underwent complete neurologic evaluation, MRI of the brain, electrophysiologic examination, and neuropsychological testing. Fibroblasts were collected to investigate the cellular phenotype and correlation with the clinical presentation. RESULTS: In 9 mildly affected patients with CHD, we documented learning and behavioral difficulties along with developmental structural abnormalities of the cerebellum and posterior fossa, which are apparent early in childhood. A range of progressive neurologic problems emerge in early adulthood, including cerebellar deficits, polyneuropathies, spasticity, cognitive decline, and parkinsonism. CONCLUSIONS: Patients with undiagnosed atypical CHD manifesting some of these wide-ranging yet nonspecific neurologic complaints may reside in general and specialty neurology clinics. The absence of the typical bleeding or infectious diathesis in mildly affected patients with CHD renders them difficult to diagnose. Identification of these individuals is important not only for close surveillance of potential CHD-related systemic complications but also for a full understanding of the natural history of CHD and the potential role of the disease-causing protein, LYST, to the pathophysiology of other neurodevelopmental and neurodegenerative disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA