RESUMEN
Antitumor immunity can be hampered by immunosuppressive mechanisms in the tumor microenvironment, including recruitment of arginase (ARG) expressing myeloid cells that deplete l-arginine essential for optimal T-cell and natural killer cell function. Hence, ARG inhibition can reverse immunosuppression enhancing antitumor immunity. We describe AZD0011, a novel peptidic boronic acid prodrug to deliver an orally available, highly potent, ARG inhibitor payload (AZD0011-PL). We demonstrate that AZD0011-PL is unable to permeate cells, suggesting that this compound will only inhibit extracellular ARG. In vivo, AZD0011 monotherapy leads to arginine increases, immune cell activation, and tumor growth inhibition in various syngeneic models. Antitumor responses increase when AZD0011 is combined with anti-PD-L1 treatment, correlating with increases in multiple tumor immune cell populations. We demonstrate a novel triple combination of AZD0011, anti-PD-L1, and anti-NKG2A, and combination benefits with type I IFN inducers, including polyI:C and radiotherapy. Our preclinical data demonstrate AZD0011's ability to reverse tumor immunosuppression and enhance immune stimulation and antitumor responses with diverse combination partners providing potential strategies to increase immuno-oncology therapies clinically.
Asunto(s)
Arginasa , Linfocitos T , Humanos , Línea Celular Tumoral , Terapia de Inmunosupresión , Tolerancia Inmunológica , Microambiente TumoralRESUMEN
Current methods of STING activation based on intra-tumoral injections of cyclic dinucleotides (CDNs) are not suitable for addressing tumor heterogeneity or for inaccessible, metastatic and abscopal tumors. In this study, we developed systemically administered CD103+ dendritic cell (DCs) targeted liposomal formulations and evaluated the anti-tumor efficacy with low dose. Liposomal CDN formulations were prepared using Clec9a targeting peptide and evaluated therapeutic efficacy in vitro and in vivo in subcutaneous MC38 and B16F10 tumor models. Targeted delivery of CDNs is expected to enhance anti-tumor immune response as well as reduce off-target toxicities. With intravenous 0.1 mg/kg systemic CDN dose of the targeted liposomal formulation, our results showed robust immune response with significant antitumor efficacy both as a monotherapy and in combination with anti-PD-L1 antibody. These results show that a CD103+ DC targeted CDN formulation can lead to potent immune stimulation upon systemic administration even in relatively "cold" tumors such as B16F10.
Asunto(s)
Inmunoterapia , Neoplasias , Células Dendríticas , Humanos , Inmunoterapia/métodos , Liposomas , Proteínas de la Membrana , Neoplasias/terapiaRESUMEN
The interplay between cancer and inflammation has been well documented over the years and the role of nanomedical technologies for treating both these diseases has become evident over the past few decades. With the advances in nanoparticle-based imaging and therapeutic platforms that can exploit the pathological conditions of the tumor and the inflamed sites to effectively deliver drugs, genes and imaging/contrast agents; the management of such conditions with favorable therapeutic outcomes seems plausible. This review will summarize some of the latest advances in the field of targeted nanomedicine development to combat cancer and inflammation. Illustrative examples of multifunctional-targeted nanosystems are presented that highlight their potential in delivering diverse payloads, including small molecule drugs, nucleic acids and imaging agents for simultaneous theranostic interventions.