Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurochem ; 137(6): 913-30, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26991551

RESUMEN

Astroglial cells possess an array of cellular defense mechanisms, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damages caused by oxidative stress. Nevertheless, astroglial cell viability and functionality can be affected by significant oxidative stress. We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent glioprotective agent that prevents hydrogen peroxide (H2 O2 )-induced apoptosis in cultured astrocytes. The purpose of this study was to investigate the potential protective effect of PACAP against oxidative-generated alteration of astrocytic antioxidant systems. Incubation of cells with subnanomolar concentrations of PACAP inhibited H2 O2 -evoked reactive oxygen species accumulation, mitochondrial respiratory burst, and caspase-3 mRNA level increase. PACAP also stimulated SOD and catalase activities in a concentration-dependent manner, and counteracted the inhibitory effect of H2 O2 on the activity of these two antioxidant enzymes. The protective action of PACAP against H2 O2 -evoked inhibition of antioxidant systems in astrocytes was protein kinase A, PKC, and MAP-kinase dependent. In the presence of H2 O2 , the SOD blocker NaCN and the catalase inhibitor 3-aminotriazole, both suppressed the protective effects of PACAP on SOD and catalase activities, mitochondrial function, and cell survival. Taken together, these results indicate that the anti-apoptotic effect of PACAP on astroglial cells can account for the activation of endogenous antioxidant enzymes and reduction in respiration rate, thus preserving mitochondrial integrity and preventing caspase-3 expression provoked by oxidative stress. Considering its powerful anti-apoptotic and anti-oxidative properties, the PACAPergic signaling system should thus be considered for the development of new therapeutical approaches to cure various pathologies involving oxidative neurodegeneration. We propose the following cascade for the glioprotective action of Pituitary adenylate cyclase-activating polypeptide (PACAP) against H2 O2 -induced astrocyte damages and cell apoptosis in cultured rat astrocytes. PACAP, through activation of its receptor, PAC1-R, and the protein kinase A (PKA), protein kinase C (PKC), and MAP-kinases signaling pathways, prevents accumulation of ROS and inhibition of SOD and catalase activities. This allows the preservation of mitochondrial membrane integrity and the reduction in caspase-3 activation induced by H2 O2 . These data may lead to the development of new strategies for cerebral injury treatment. Cat, catalase; Cyt. C, cytochrome C; SOD, superoxide dismutase.


Asunto(s)
Antioxidantes/farmacología , Astrocitos/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Oxidantes/toxicidad , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antioxidantes/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Catalasa/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Factores de Tiempo
2.
J Neurochem ; 117(3): 403-11, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21244427

RESUMEN

Oxidative stress, associated with a variety of disorders including neurodegenerative diseases, results from accumulation of reactive oxygen species (ROS). Oxidative stress is not only responsible for neuron apoptosis, but can also provoke astroglial cell death. Numerous studies indicate that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neuron survival, but nothing is known regarding the action of PACAP on astroglial cell survival. Thus, the purpose of the present study was to investigate the potential glioprotective effect of PACAP on H(2)O(2)-induced astrocyte death. Pre-treatment of cultured rat astrocytes with nanomolar concentrations of PACAP prevented cell death provoked by H(2)O(2) (300 µM), whereas vasoactive intestinal polypeptide was devoid of protective activity. The effect of PACAP on astroglial cell survival was abolished by the type 1 PACAP receptor antagonist, PACAP6-38. The protective action of PACAP was blocked by the protein kinase A inhibitor H89, the protein kinase C inhibitor chelerythrine and the mitogen-activated protein (MAP)-kinase kinase (MEK) inhibitor U0126. PACAP stimulated glutathione formation, and blocked H(2)O(2)-evoked ROS accumulation and glutathione content reduction. In addition, PACAP prevented the decrease of mitochondrial activity and caspase 3 activation induced by H(2)O(2). Taken together, these data indicate for the first time that PACAP, acting through type 1 PACAP receptor, exerts a potent protective effect against oxidative stress-induced astrocyte death. The anti-apoptotic activity of PACAP on astrocytes is mediated through the protein kinase A, protein kinase C and MAPK transduction pathways, and can be accounted for by inhibition of ROS-induced mitochondrial dysfunctions and caspase 3 activation.


Asunto(s)
Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Estrés Oxidativo/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Animales , Animales Recién Nacidos , Astrocitos/química , Caspasa 3/metabolismo , Células Cultivadas , Cerebelo/citología , Corteza Cerebral/citología , Medios de Cultivo Condicionados/farmacología , Interacciones Farmacológicas , Glutatión/metabolismo , Peróxido de Hidrógeno/farmacología , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
3.
Artículo en Inglés | MEDLINE | ID: mdl-23181054

RESUMEN

Astroglial cells possess an array of cellular defense systems, including superoxide dismutase (SOD) and catalase antioxidant enzymes, to prevent damage caused by oxidative stress on the central nervous system. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides including the octadecaneuropeptide (ODN). ODN is the ligand of both central-type benzodiazepine receptors (CBR), and an adenylyl cyclase- and phospholipase C-coupled receptor. We have recently shown that ODN is a potent protective agent that prevents hydrogen peroxide (H(2)O(2))-induced inhibition of SOD and catalase activities and stimulation of cell apoptosis in astrocytes. The purpose of the present study was to investigate the type of receptor involved in ODN-induced inhibition of SOD and catalase in cultured rat astrocytes. We found that ODN induced a rapid stimulation of SOD and catalase gene transcription in a concentration-dependent manner. In addition, 0.1 nM ODN blocked H(2)O(2)-evoked reduction of both mRNA levels and activities of SOD and catalase. Furthermore, the inhibitory actions of ODN on the deleterious effects of H(2)O(2) on SOD and catalase were abrogated by the metabotropic ODN receptor antagonist cyclo(1-8)[Dleu(5)]OP, but not by the CBR antagonist flumazenil. Finally, the protective action of ODN against H(2)O(2)-evoked inhibition of endogenous antioxidant systems in astrocytes was protein kinase A (PKA)-dependent, but protein kinase C-independent. Taken together, these data demonstrate for the first time that ODN, acting through its metabotropic receptor coupled to the PKA pathway, prevents oxidative stress-induced alteration of antioxidant enzyme expression and activities. The peptide ODN is thus a potential candidate for the development of specific agonists that would selectively mimic its protective activity.

4.
PLoS One ; 7(8): e42498, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927932

RESUMEN

Astrocytes synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN) an endogenous ligand of both central-type benzodiazepine (CBR) and metabotropic receptors. We have recently shown that ODN exerts a protective effect against hydrogen peroxide (H(2)O(2))-induced oxidative stress in astrocytes. The purpose of the present study was to determine the type of receptor and the transduction pathways involved in the protective effect of ODN in cultured rat astrocytes. We have first observed a protective activity of ODN at very low concentrations that was abrogated by the metabotropic ODN receptor antagonist cyclo(1-8)[DLeu(5)]OP, but not by the CBR antagonist flumazenil. We have also found that the metabotropic ODN receptor is positively coupled to adenylyl cyclase in astrocytes and that the glioprotective action of ODN upon H(2)O(2)-induced astrocyte death is PKA- and MEK-dependent, but PLC/PKC-independent. Downstream of PKA, ODN induced ERK phosphorylation, which in turn activated the expression of the anti-apoptotic gene Bcl-2 and blocked the stimulation by H(2)O(2) of the pro-apoptotic gene Bax. The effect of ODN on the Bax/Bcl-2 balance contributed to abolish the deleterious action of H(2)O(2) on mitochondrial membrane integrity and caspase-3 activation. Finally, the inhibitory effect of ODN on caspase-3 activity was shown to be PKA and MEK-dependent. In conclusion, the present results demonstrate that the potent glioprotective action of ODN against oxidative stress involves the metabotropic ODN receptor coupled to the PKA/ERK-kinase pathway to inhibit caspase-3 activation.


Asunto(s)
Apoptosis/efectos de los fármacos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inhibidor de la Unión a Diazepam/farmacología , Peróxido de Hidrógeno/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuropéptidos/farmacología , Fragmentos de Péptidos/farmacología , Adenilil Ciclasas/metabolismo , Animales , Astrocitos/enzimología , Astrocitos/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glutatión/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA