Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 82(17): 5309-19, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342550

RESUMEN

UNLABELLED: Salmonella is recognized as one of the most significant enteric foodborne bacterial pathogens. In recent years, the resistance of pathogens to biocides and other environmental stresses, especially when they are embedded in biofilm structures, has led to the search for and development of novel antimicrobial strategies capable of displaying both high efficiency and safety. In this direction, the aims of the present work were to evaluate the antimicrobial activity of hydrosol of the Mediterranean spice Thymbra capitata against both planktonic and biofilm cells of Salmonella enterica serovar Typhimurium and to compare its action with that of benzalkonium chloride (BC), a commonly used industrial biocide. In order to achieve this, the disinfectant activity following 6-min treatments was comparatively evaluated for both disinfectants by calculating the concentrations needed to achieve the same log reductions against both types of cells. Their bactericidal effect against biofilm cells was also comparatively determined by in situ and real-time visualization of cell inactivation through the use of time-lapse confocal laser scanning microscopy (CLSM). Interestingly, results revealed that hydrosol was almost equally effective against biofilms and planktonic cells, whereas a 200-times-higher concentration of BC was needed to achieve the same effect against biofilm compared to planktonic cells. Similarly, time-lapse CLSM revealed the significant advantage of the hydrosol to easily penetrate within the biofilm structure and quickly kill the cells, despite the three-dimensional (3D) structure of Salmonella biofilm. IMPORTANCE: The results of this paper highlight the significant antimicrobial action of a natural compound, hydrosol of Thymbra capitata, against both planktonic and biofilm cells of a common foodborne pathogen. Hydrosol has numerous advantages as a disinfectant of food-contact surfaces. It is an aqueous solution which can easily be rinsed out from surfaces, it does not have the strong smell of the essential oil (EO) and it is a byproduct of the EO distillation procedure without any industrial application until now. Consequently, hydrosol obviously could be of great value to combat biofilms and thus to improve product safety not only for the food industries but probably also for many other industries which experience biofilm-related problems.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Desinfectantes/farmacología , Lamiaceae/química , Extractos Vegetales/farmacología , Salmonella typhimurium/efectos de los fármacos , Antibacterianos/química , Desinfectantes/química , Desinfectantes/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Salmonella typhimurium/fisiología
2.
Food Microbiol ; 56: 35-44, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26919816

RESUMEN

The potential of biofilm formation of multifunctional starters Lactobacillus pentosus B281 and Pichia membranifaciens M3A during inoculated fermentation of Conservolea natural black olives according to Greek-style processing was investigated. Olives were directly brined in 8% (w/v) NaCl following three fermentation procedures namely, i) spontaneous fermentation, ii) inoculated fermentation with L. pentosus B281, and iii) co-inoculated fermentation with L. pentosus B281 and P. membranifaciens M3A. Lactic acid bacteria (LAB) and yeasts were monitored on olives by plate counting for a period of 153 days, whereas the survival of the inoculated strains was confirmed by Pulsed Field Gel Electrophoresis (PFGE) and Restriction Fragment Length Polymorphism (RFLP) analysis. Inoculated fermentation with L. pentosus B281 with/without the presence of the yeast resulted in higher acidification of the brine compared to the spontaneous process where no indigenous LAB could be enumerated. The population of LAB on olives ranged between 5.5 and 6.5 log CFU/g and it was maintained at higher levels compared to yeasts (3.5-4.5 log CFU/g) throughout the process. PFGE analysis revealed that L. pentosus B281 could successfully colonize the surface of black olives presenting high recovery rate (100%) at the end of fermentation in contrast to P. membranifaciens M3A that was successfully recovered (42%) only after 72 days of the process. The obtained results provide interesting perspectives for the production of natural black olives with functional properties.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Microbiología de Alimentos , Lactobacillus/fisiología , Olea/microbiología , Fermentación , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Probióticos/metabolismo , Sales (Química)/química
3.
Int J Food Microbiol ; 416: 110676, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507974

RESUMEN

Listeria monocytogenes biofilms present a significant challenge in the food industry. This study explores the impact of different acidic conditions of culture media and food matrices on the development and removal of biofilms developed on stainless steel surfaces by wild-type (WT) L. monocytogenes strains as well as in two mutant derivatives, ΔsigB and ΔagrA, that have defects in the general stress response and quorum sensing, respectively. Additionally, the study investigates the efficacy of nanoencapsulated carvacrol as an antimicrobial against L. monocytogenes biofilms developed in Tryptic Soy Broth (TSB) culture media acidified to different pH conditions (3.5, 4.5, 5.5, 6.5), and in food substrates (apple juice, strained yogurt, vegetable soup, semi-skimmed milk) having the same pH levels. No biofilm formation was observed for all L. monocytogenes strains at pH levels of 3.5 and 4.5 in both culture media and food substrates. However, at pH 5.5 and 6.5, increased biofilm levels were observed in both the culture media and food substrates, with the WT strain showing significantly higher biofilm formation (3.04-6.05 log CFU cm-2) than the mutant strains (2.30-5.48 log CFU cm-2). For both applications, the nanoencapsulated carvacrol demonstrated more potent antimicrobial activity against biofilms developed at pH 5.5 with 2.23 to 3.61 log reductions, compared to 1.58-2.95 log reductions at pH 6.5, with mutants being more vulnerable in acidic environments. In food substrates, nanoencapsulated carvacrol induced lower log reductions (1.58-2.90) than the ones in TSB (2.02-3.61). These findings provide valuable insights into the impact of different acidic conditions on the development of L. monocytogenes biofilms on stainless steel surfaces and the potential application of nanoencapsulated carvacrol as a biofilm control agent in food processing environments.


Asunto(s)
Antiinfecciosos , Cimenos , Listeria monocytogenes , Acero Inoxidable/análisis , Biopelículas , Medios de Cultivo , Microbiología de Alimentos , Recuento de Colonia Microbiana
4.
J Trace Elem Med Biol ; 83: 127402, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38310829

RESUMEN

BACKGROUND AND OBJECTIVE: Yeasts have the remarkable capability to transform and integrate inorganic selenium into their cellular structures, thereby enhancing its bioavailability and reducing its toxicity. In recent years, yeasts have attracted attention as potential alternative sources of protein. METHODS: This study explores the selenium accumulation potential of two less explored yeast strains, namely the probiotic Saccharomyces boulardii CCDM 2020 and Pichia fermentas CCDM 2012, in comparison to the extensively studied Saccharomyces cerevisiae CCDM 272. Our investigation encompassed diverse stress conditions. Subsequently, the selenized yeasts were subjected to an INFOGEST gastrointestinal model. The adherence and hydrophobicity were determined with undigested cells RESULTS: Stress conditions had an important role in influencing the quantity and size of selenium nanoparticles (SeNPs) generated by the tested yeasts. Remarkably, SeMet synthesis was limited to Pichia fermentas CCDM 2012 and S. boulardii CCDM 2020, with S. cerevisiae CCDM 272 not displaying SeMet production at all. Throughout the simulated gastrointestinal digestion, the most substantial release of SeCys2, SeMet, and SeNPs from the selenized yeasts occurred during the intestinal phase. Notably, exception was found in strain CCDM 272, where the majority of particles were released during the oral phase. CONCLUSION: The utilization of both traditional and non-traditional selenized yeast types, harnessed for their noted functional attributes, holds potential for expanding the range of products available while enhancing their nutritional value and health benefits.


Asunto(s)
Probióticos , Saccharomyces boulardii , Selenio , Saccharomyces cerevisiae/química , Saccharomyces boulardii/metabolismo , Pichia , Selenio/metabolismo , Probióticos/metabolismo , Digestión
5.
Nutrients ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732578

RESUMEN

This study examined the effects of orange juice (OJ) supplemented with vitamin D3 (2000 IU) and probiotics (Lacticaseibacillus casei Shirota and Lacticaseibacillus rhamnosus GG, 108 cfu/mL) on cardiometabolic risk factors in overweight and obese adults following a Westernized-type diet. Fifty-three high-risk individuals were randomly assigned to one of two groups. Over 8 weeks, one group consumed a vitamin D3 and probiotic-enriched OJ and the other regular OJ (control). Diets remained unchanged and were documented through food diaries. Measures of metabolic and inflammatory markers and blood pressure were measured at the start and end of the study. Post-intervention, the enriched OJ group showed the following significant metabolic improvements (without changes in triglycerides, inflammation, or central blood pressure): reduced fasting insulin, peripheral blood pressure, body weight (-1.4 kg 95% CI: -2.4, -0.4), energy (-270 kcal 95% CI: -553.2, -13.7), macronutrient (dietary fat -238 kcal 95% CI: -11.9, -1.0; carbohydrates -155 kcal 95% CI: -282.4, -27.3; sugars -16.1 g 95% CI: -11.9, -1.0) intake, and better lipid profiles (total cholesterol -10.3 mg/dL 95% CI: -21.4, 0.9; LDL-C -7 mg/dL 95% CI: -13.5, -0.5). The enriched OJ led to weight loss, less energy/macronutrient consumption, improved lipid profiles, and increased insulin sensitivity after 8 weeks in those following a Westernized diet, thus indicating potential benefits for cardiometabolic risk. This study was a part of FunJuice-T2EDK-01922, which was funded by the EU Regional Development Fund and Greek National Resources.


Asunto(s)
Presión Sanguínea , Factores de Riesgo Cardiometabólico , Colecalciferol , Citrus sinensis , Dieta Occidental , Jugos de Frutas y Vegetales , Resistencia a la Insulina , Lípidos , Probióticos , Humanos , Masculino , Probióticos/administración & dosificación , Femenino , Persona de Mediana Edad , Presión Sanguínea/efectos de los fármacos , Colecalciferol/administración & dosificación , Colecalciferol/farmacología , Lípidos/sangre , Obesidad/sangre , Adulto , Suplementos Dietéticos , Sobrepeso , Peso Corporal , Pérdida de Peso , Lacticaseibacillus rhamnosus
6.
Antonie Van Leeuwenhoek ; 103(4): 821-32, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23224439

RESUMEN

Sixteen Lactobacillus plantarum strains, isolated from fermented table olives, were studied for the presence and expression of genes involved in the production of bacteriocins, pheromones and other peptides. The presence of 13 genes that belong to pln locus was monitored, while for the study of gene expression, producer strains were cultured in growth medium with variant salinity (0, 4, 6, and 8 % NaCl) and pH (3.5, 4.0, 4.5, and 6.4). The effect of producer strain on the growth of indicator microorganisms was evaluated using a well diffusion assay. In parallel, Real-Time PCR was employed to monitor the genetic expression of plnE/F and plnJ/K genes for strains that revealed the highest antimicrobial activity. The well diffusion assay showed that the growth of Lactobacillus pentosus was inhibited by six L. plantarum strains when cultured on control medium (0 % NaCl, pH 6.4). Moreover, when the same growth medium was supplemented with 4 and 6 % NaCl, the growth of L. pentosus was inhibited by three and two L. plantarum strains, respectively. Growth of L. pentosus was favoured when L. plantarum strains were cultured on a growth medium with lowered pH (3.5, 4.0, and 4.5). No inhibition of pathogens was observed, but in a few cases, inhibition of Aureobasidium pullulans was detected. The Real-Time PCR assay revealed that the expression of genes was dependent on producer strains and growth phase, whereas inhibition of indicator strains was enhanced in earlier stages of the growth curve in the presence of NaCl, although similar counts were obtained.


Asunto(s)
Ascomicetos/efectos de los fármacos , Bacteriocinas/genética , Bacteriocinas/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Olea/microbiología , Perfilación de la Expresión Génica , Lactobacillus plantarum/efectos de los fármacos , Péptidos/genética , Feromonas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Food Microbiol ; 34(1): 62-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23498179

RESUMEN

In the present study, the succession of the biota grown on a selective medium for pseudomonads (pseudomonas agar based medium - PAB) during the storage of meat under different conditions was monitored. Thus, minced beef was stored aerobically and under modified atmosphere packaging in the presence (MAP+) and absence (MAP-) of oregano essential oil at 0, 5, 10 and 15 °C. A total of 267 pure cultures were recovered from PAB throughout the storage period and subjected to PCR-Denaturing gradient gel electrophoresis (PCR-DGGE) for their differentiation. In parallel, the direct analysis of the whole cultivable community (WCC) from the same medium was applied. These two approaches were used in order to indicate the lack of selectivity. Fifteen different DGGE fingerprints were obtained after PCR - DGGE analysis of the isolates, which were assigned to Pseudomonas putida (3 fingerprints), Pseudomonas fragi and Pseudomonas fluorescens, Pseudomonas spp., Serratia liquefaciens (2), Citrobacter freundii, Serratia grimesii, Hafnia alvei (3), Rahnella spp. and Morganella morganii. Twelve of them occurred during the direct analysis of the WCC. The biota succession found to be affected from the different storage conditions. However, the outcome of the two strategies was quite different, which is leading to the use of different appropriated molecular approaches in order to widen the knowledge of bacterial succession of meat.


Asunto(s)
Contaminación de Alimentos/análisis , Carne/microbiología , Pseudomonas/crecimiento & desarrollo , Animales , Bovinos , Medios de Cultivo/metabolismo , Electroforesis en Gel de Gradiente Desnaturalizante , Contaminación de Alimentos/prevención & control , Almacenamiento de Alimentos , Reacción en Cadena de la Polimerasa , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Pseudomonas/metabolismo
8.
Front Microbiol ; 14: 1144058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846753

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2022.1107603.].

9.
Microorganisms ; 11(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36838246

RESUMEN

Loigolactobacillus backii is an important beer-spoiling species, exhibiting high hop tolerance. Here, we present the annotated whole genome sequence of two recently isolated strains, Lg. backii KKP 3565 and KKP 3566. Firstly, to study the genetic basis of the persistence of the two isolates in beer, a comprehensive bioinformatic analysis ensued. Their chromosome map was constructed, using whole-genome sequencing and assembly, revealing that the two strains carry genomes with a length of 2.79 Mb with a GC content of 40.68%. An average nucleotide identity (ANI) analysis demonstrated that the novel strains possess unique genomic sequences, also confirming their classification into the Lg. backii species. Their genome harbors numerous insertion sequences and plasmids, originating from other beer-spoiling species. Regarding their adaptation in brewery environment, homologous genes that confer resistance to hop were spotted, while the impact of hop bitters and pure beer on bacterial growth was investigated, in vitro. In brief, low hop concentrations were found to induce the proliferation of strains, while a higher concentration negatively affected their growth. Nonetheless, their ability to survive in pure beer indicated their tolerance to high hop concentrations. These results offer insight into the capacity of Lg. backii KKP 3566 and Lg. backii KKP 3566 to tolerate the extreme conditions prevalent in the brewery environment.

10.
Genes (Basel) ; 14(9)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37761850

RESUMEN

Among the beer-spoiling microorganisms, the dominant ones belong to the genera Lactobacillus, Leuconostoc, Oenococcus, and Pediococcus. It is assumed that resistance to hop bitters correlates with resistance to other factors and can significantly impact the brewing industry. Beer preservation with high hydrostatic pressure eliminates the spoiling microorganisms while preserving all desired properties of the beer. Here, we present comprehensive in vitro and genomic analysis of the beer-spoiling Lactiplantibacillus plantarum KKP 3573 capacity to resist hop and high hydrostatic pressure. Lp. plantarum KKP 3573 is a strain isolated from spoiled beer. Our finding suggests that the growth rate of the strain depends on the medium variant, where a small concentration of beer (5 IBU) stimulates the growth, suggesting that the limited concentration has a positive effect on cell growth. At the same time, increased concentrations of 20 IBU, 30 IBU, and pure beer 43.6 IBU decreased the growth rate of the KKP 3573 strain. We observed that higher extract content in the pressurized beer increased microbial survivability. The wort and Vienna Lager beer can stimulate the baroprotective effect. The taxonomy of the novel strain was confirmed after whole genome sequencing (WGS) and comparative genomic analysis. More specifically, it contains a chromosome of 3.3 Mb with a GC content of 44.4%, indicative of the Lp. plantarum species. Accordingly, it possesses high genomic similarity (>98%) with other species members. Annotation algorithms revealed that the strain carries several genes involved in resistance to stress, including extreme temperature, hop bitters and high pressure, and adaptation to the brewing environment. Lastly, the strain does not code for toxins and virulence proteins and cannot produce biogenic amines.


Asunto(s)
Cerveza , Lactobacillus , Presión Hidrostática , Pediococcus/genética , Pediococcus/metabolismo , Genómica
11.
Metabolites ; 13(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37512498

RESUMEN

This study aimed to determine the glycemic index (GI) of a commercial mixed fruit juice (apple, orange, grape, and pomegranate; FJ) fortified with vitamin D3 or n-3 polyunsaturated fatty acids (PUFA) or probiotics, and their combination, and their effects on glycemic responses and salivary insulin concentrations. In a randomized controlled, double-blind, crossover study, 11 healthy participants (25 ± 2 years; five women; body mass index = 23 ± 1 kg/m2) were randomly assigned to receive five types of FJs [vitD (with vitamin D3); n-3 (with n-3 PUFA); probiotics (with Lacticaseibacillus casei Shirota and Lacticaseibacillus rhamnosus GG); vitD-n-3-probiotics FJ (combination of vitD3-n-3-probiotics), control (regular FJ)], all containing 50 g available carbohydrate, and glucose as reference drink. All FJs provided low GI values (control: 54; vitD3: 52; n-3: 51; probiotics: 50; and vitD-n-3-probiotics combination: 52, on glucose scale). Compared to the FJ control, the enriched FJs produced different postprandial glycemic and insulinemic responses and affected satiety scores. All FJ types, regardless of the added biofunctional ingredients, attenuated postprandial glycemic responses, which may offer advantages to glycemic control.

12.
Int J Food Microbiol ; 405: 110334, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37517119

RESUMEN

The advent of high-throughput sequencing technologies in recent years has revealed the unexpected presence of genus Photobacterium within the chicken meat spoilage ecosystem. This study was undertaken to decipher the occurrence, the growth patterns and the genotypic biodiversity of Photobacterium phosphoreum on chicken breast fillets stored aerobically at 4 °C through conventional microbiological methods and molecular techniques. Samples were periodically cultured on marine broth agar (MA; supplemented with meat extract and vancomycin) for the enumeration of presumptive bioluminescent Photobacterium spp. In total, 90 bioluminescent bacteria were recovered from the initial (time of first appearance), middle and end stages of storage. Concomitantly, 95 total psychrotrophic/psychrophilic bacteria were isolated from the same medium to assess the presence and diversity of non-luminous photobacteria. Genetic diversity between bioluminescent isolates was assessed with two PCR-based DNA fingerprinting methods, i.e. RAPD and rep-PCR. Moreover, the characterization of selected bacterial isolates at the genus and/or species level was performed by sequencing of the 16S rRNA and/or gyrB gene. Bioluminescent bacteria were scarcely encountered in fresh samples at population levels of ca. 2.0 log CFU/g, whilst total psychrotrophic/psychrophilic bacteria were found at levels of ca. 4.4 log CFU/g. As time proceeded and close to shelf-life end, bioluminescent bacteria were encountered at higher populations, and were found at levels of 5.3 and 7.0 log CFU/g in samples from the second and third batch, respectively. In the first batch their presence was occasional and at levels up to 3.9 log CFU/g. Accordingly, total psychrotrophic/psychrophilic bacteria exceeded 8.4 log CFU/g at the end of storage, suggesting the possible underestimation of bioluminescent populations following the specific cultivation conditions. Sequence analysis assigned bioluminescent isolates to Photobacterium phosphoreum, while genetic fingerprinting revealed high intra-species variability. Respectively, total psychrotrophs/psychrophiles were assigned to genera Pseudomonas, Shewanella, Psychrobacter, Acinetobacter, Vibrio and Photobacterium. Non-luminous photobacteria were not identified within the psychrotrophs/psychrophiles. Results of the present study reveal the intra- and inter-batch variability on the occurrence and growth responses of P. phosphoreum and highlight its potential role in the chicken meat spoilage consortium.


Asunto(s)
Photobacterium , Vibrio , Animales , Pollos/genética , Microbiología de Alimentos , Carne/microbiología , Técnica del ADN Polimorfo Amplificado Aleatorio , ARN Ribosómico 16S/genética , Vibrio/genética
13.
Pathogens ; 12(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37111459

RESUMEN

Microbial interactions play an important role in initial cell adhesion and the endurance of biofilm toward disinfectant stresses. The present study aimed to evaluate the effect of microbial interactions on biofilm formation and the disinfecting activity of an innovative photocatalytic surfactant based on TiO2 nanoparticles. Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli, Leuconostoc spp., Latilactobacillus sakei, Serratia liquefaciens, Serratia proteomaculans, Citrobacter freundii, Hafnia alvei, Proteus vulgaris, Pseudomonas fragi, and Brochothrix thermosphacta left to form mono- or dual-species biofilms on stainless steel (SS) coupons. The effectiveness of the photocatalytic disinfectant after 2 h of exposure under UV light on biofilm decontamination was evaluated. The effect of one parameter i.e., exposure to UV or disinfectant, was also determined. According to the obtained results, the microbial load of a mature biofilm depended on the different species or dual species that had adhered to the surface, while the presence of other species could affect the biofilm population of a specific microbe (p < 0.05). The disinfectant strengthened the antimicrobial activity of UV, as, in most cases, the remaining biofilm population was below the detection limit of the method. Moreover, the presence of more than one species affected the resistance of the biofilm cells to UV and the disinfectant (p < 0.05). In conclusion, this study confirms that microbial interactions affected biofilm formation and decontamination, and it demonstrates the effectiveness of the surfactant with the photocatalytic TiO2 agent, suggesting that it could be an alternative agent with which to disinfect contaminated surfaces.

14.
Front Microbiol ; 14: 1254598, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886066

RESUMEN

Feta cheese is the most recognized Greek Protected Designation of Origin (PDO) product in the world. The addition of selected autochthonous lactic acid bacteria (LAB) strains to cheese milk as adjunct cultures is gaining more attention, since they can impact the nutritional, technological and sensory properties of cheeses, as well as improve the safety of the product. The aim of this study was to produce Feta cheese with enhanced quality and safety, and distinctive organoleptic characteristics by applying autochthonous lactic acid bacteria (LAB) with multi-functional properties as adjunct cultures. Feta cheeses were produced with the commercial lactococcal starter culture and the addition of 9 LAB strains (Lactococcus lactis SMX2 and SMX16, Levilactobacillus brevis SRX20, Lacticaseibacillus paracasei SRX10, Lactiplantibacillus plantarum FRX20 and FB1, Leuconostoc mesenteroides FMX3, FMX11, and FRX4, isolated from artisanal Greek cheeses) in different combinations to produce 13 cheese trials (12 Feta trials with the adjunct LAB isolates and the control trial). In addition, Feta cheese manufactured with FMX3 and SMX2 and control Feta cheese were artificially inoculated (4 log CFU/g) with Listeria monocytogenes (a cocktail of 4 acid or non-acid adapted strains). Cheese samples were monitored by microbiological and physicochemical analyses during ripening, and microbiological, physicochemical, molecular and sensory analyses during storage at 4°C. The results showed that after manufacture, the LAB population was ca. 9.0 log CFU/g at all samples, whereas during storage, their population declined to 6.5-7.0 log CFU/g. In the Listeria inoculated samples, Listeria was absent after 60 days (end of ripening) and after 90 days in the adjunct culture, and in the control trials, respectively. Moreover, the addition of selected strains, especially Lcb. paracasei SRX10, led to cheeses with desirable and distinctive organoleptic characteristics. Furthermore, randomly amplified polymorphic PCR (RAPD-PCR) molecular analysis confirmed that the multi-functional LAB strains were viable by the end of storage. Overall, the results of this study are promising for the use of autochthonous strains in various combinations with the commercial starter culture to satisfy industry requirements and consumer demands for traditional and high added value fermented products.

15.
Microorganisms ; 10(2)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35208701

RESUMEN

The aim of the current study was to isolate indigenous lactic acid bacteria (LAB) from traditional Greek cheeses and assess their biochemical, technological, and functional characteristics, so as to develop novel cultures with multi-functional properties. Hence, 109 LAB isolates were recovered from traditional fresh cheeses and were evaluated in vitro for their gas production; proteolytic, lipolytic, and haemolytic activity; exopolysaccharide production (EPS); enzymatic potential; and ability to grow at 6.5% NaCl and at different pH, temperature, and anaerobic conditions. Consequently, 48 selected isolates were further evaluated for their survival under simulated gastrointestinal tract conditions, partial bile salt hydrolase activity, antibiotic resistance, and antimicrobial activity against pathogens. These isolates were also incorporated as co-cultures in yogurt production to examine their sensory characteristics and their survival in the product. Some prominent isolates that showed favorable technological and functional characteristics (good survival rates at low pH and bile salts, ability to produce ß-galactosidase, and EPS) and attributed desirable sensory characteristics to yogurt were Lactococcuslactis (SRX2, SRX3, SRX5, and SMX16), Lactobacillus paracasei SRX10, and Lactiplantibacillusplantarum (FRX7, FB1), while Leuconostoc mesenteroides FMX3 and L. lactis SMX2 showed an anti-listerial activity in vitro. The results of the present study are promising for the production of novel dairy functional products with an enhanced quality and safety.

16.
Appl Microbiol Biotechnol ; 91(1): 101-12, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21484206

RESUMEN

The aim of the present study was to investigate the production of 1,3-propanediol (PDO) under non-sterile fermentation conditions by employing the strain Clostridium butyricum VPI 1718. A series of batch cultures were performed by utilizing biodiesel-derived crude glycerol feedstocks of different origins as the sole carbon source, in various initial concentrations. The strain presented similarities in terms of PDO production when cultivated on crude glycerol of various origins, with final concentrations ranging between 11.1 and 11.5 g/L. Moreover, PDO fermentation was successfully concluded regardless of the initial crude glycerol concentration imposed (from 20 to 80 g/L), accompanied by sufficient PDO production yields (0.52-0.55 g per gram of glycerol consumed). During fed-batch operation under non-sterile culture conditions, 67.9 g/L of PDO were finally produced, with a yield of 0.55 g/g. Additionally, the sustainability of the bioprocess during a continuous operation was tested; indeed, the system was able to run at steady state for 16 days, during which PDO effluent level was 13.9 g/L. Furthermore, possible existence of a microbial community inside the chemostat was evaluated by operating a polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis, and DGGE results revealed the presence of only one band corresponding to that of C. butyricum VPI 1718. Finally, non-sterile continuous cultures were carried out at different dilution rates (D), with inlet glycerol concentration at 80 g/L. Maximum PDO production was achieved at low D values (0.02 h(-1)) corresponding to 30.1 g/L, while the elaboration of kinetic data from continuous cultures revealed the stability of the bioprocess proposed, with global PDO production yield corresponding to 0.52 g/g.


Asunto(s)
Clostridium butyricum/metabolismo , Fermentación , Glicerol/metabolismo , Microbiología Industrial/métodos , Glicoles de Propileno/metabolismo , Biocombustibles/análisis , Clostridium butyricum/crecimiento & desarrollo , Medios de Cultivo/metabolismo , Esterilización
17.
Microorganisms ; 9(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34946157

RESUMEN

The microbiological quality and safety of food could be assessed by mapping the microorganisms present in a particular type of food [...].

18.
Microorganisms ; 9(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34576731

RESUMEN

The present study concerns the serious issue of biodeterioration of the caves belonging to natural and cultural heritage sites due to the development of various microorganisms. Thus, a series of 18 essential oils (EOs) extracted from various Greek plants were evaluated in vitro (concentrations of 0.1, 0.2, 0.5, 1.0 and 5.0% v/v) against 35 bacterial and 31 fungi isolates (isolated from a Greek cave) and the antimicrobial activity was evident through the changes in optical density of microbial suspensions. In continuance, eight (8) representative bacterial and fungal isolates were further used to evaluate the minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values of the most effective EOs. According to the results, two EOs of Origanum vulgare were the most effective by inhibiting the growth of all the tested microorganisms at 0.1% (v/v), followed by that of Satureja thymbra which inhibited all bacterial isolates at 0.1% (v/v) and fungal isolates at 0.1, 0.2 and 0.5% (v/v) (depending on the isolate). The MIC ranged between 0.015-0.157 and 0.013-0.156 (v/v) for the bacterial and fungal isolates respectively, depending on the case. The current study demonstrated that conventional biocides may be replaced by herbal biocides with significant prospects for commercial exploitation.

19.
Foods ; 10(4)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916748

RESUMEN

Chicken is one of the most widely consumed meats worldwide. The exploration of the bacterial diversity of chicken meat may provide new insights into the chicken-associated microbiome that will lead to moderation of food spoilage or safety. This study was undertaken to explore the bacterial communities of chicken breast and thigh fillets stored at refrigeration (0 °C and 5 °C) and slightly abuse (10 °C) temperatures for 5 days through conventional cultural methods along with next-generation sequencing (NGS) analysis. Total viable counts (TVC), Brochothrix thermosphacta, Pseudomonas spp., and lactic acid bacteria (LAB) were enumerated, while the bacterial communities were mapped through 16S rRNA gene amplicon sequencing. Chicken breast and thigh fillets possessed a complex bacterial structure that incorporated a total of >200 Operational Taxonomic Units (OTUs) at the genus level. The core microbiota of fresh samples consisted of Acinetobacter, Brochothrix, Flavobacterium, Pseudomonas, Psychrobacter, and Vibrionaceae (family). These genera persisted until the end of storage in >80% of samples, except Psychrobacter and Flavobacterium, while Photobacterium was also identified. Hierarchical clustering showed a distinction of samples based on storage time and chicken part. Conventional plate counting with growth media commonly used in spoilage studies did not always correspond to the microbial community profiles derived from NGS analysis, especially in Pseudomonas, Acinetobacter, Photobacterium, and Vibrionaceae. Results of the present study highlight Photobacterium and Vibrionaceae, in general, as potent chicken meat spoilers and suggest the necessity to combine classical microbiological methods along with NGS technologies to characterize chicken meat spoilage microbiota.

20.
Food Microbiol ; 27(8): 1028-34, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20832681

RESUMEN

A total of 266 lactic acid bacteria (LAB) have been isolated from minced beef stored at 0, 5, 10 and 15 °C aerobically and under modified atmosphere packaging consisting of 40% CO(2)-30% O(2)-30% N(2) in the presence MAP (+) and absence MAP (-) of oregano essential oil. Sequencing of their 16S rRNA gene along with presence of the katA gene demonstrated dominance of the LAB microbiota by Leuconostoc spp. during aerobic storage at 5, 10 and 15 °C, as well as during MAP (-) and MAP (+) storage at 10 and 15 °C; Lactobacillus sakei prevailed during aerobic storage at 0 °C, as well as at MAP (-) and MAP (+) storage at 0 and 5 °C. The sporadic presence of other species such as Leuconostoc mesenteroides, Weisella viridescens, Lactobacillus casei and Lactobacillus curvatus has also been determined. Pulsed-Field Gel Electrophoresis of high molecular weight genomic DNA revealed the dynamics of the isolated LAB strains. Prevalence of Leuconostoc spp. was attributed to one strain only. On the other hand, packaging conditions affected Lb. sakei strain spoilage dynamics.


Asunto(s)
Biodiversidad , Manipulación de Alimentos/métodos , Lactobacillales/aislamiento & purificación , Carne/microbiología , Aerobiosis , Animales , Proteínas Bacterianas/genética , Bovinos , Embalaje de Alimentos/métodos , Ácido Láctico/metabolismo , Lactobacillales/clasificación , Lactobacillales/genética , Lactobacillales/metabolismo , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA