Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 15(28): 11840-5, 2013 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-23760404

RESUMEN

The adsorption orientation of the iron(III) tetrakis(1-methyl-4-pyridyl)porphine (FeTMPyP) µ-oxo-bridged dimer species located in the inter-particle gap of solid gold nanosphere (SGN) and hollow gold nanosphere (HGN) networks was studied using a combination of linear extinction and surface-enhanced Raman Scattering (SERS) measurements. Nanoparticle aggregation was accomplished by µM additions of iron porphyrin to the colloidal SGN and HGN solutions. Aggregation was monitored by measuring the UV-Visible-NIR extinction spectra of the nanoparticle systems; a broadened and red-shifted localized surface plasmon resonance (LSPR), relative to the LSPR of the isolated nanoparticles, indicated aggregate formation. In conjunction with the LSPR extinction measurements, wavelength-dependent SERS measurements were used to determine the orientation of the FeTMPyP with respect to the SGN and HGN surfaces.

2.
J Am Chem Soc ; 134(10): 4477-80, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22375925

RESUMEN

We report the first observation of a magnetic dipolar contribution to the nonlinear optical (NLO) response of colloidal metal nanostructures. Second-order NLO responses from several individual solid gold nanosphere (SGN) dimers, which we prepared by a bottom-up approach, were examined using polarization-resolved second harmonic generation (SHG) spectroscopy at the single-particle level. Unambiguous circular dichroism in the SH signal was observed for most of the dimeric colloids, indicating that the plasmon field located within the interparticle gap was chiral. Detailed analysis of the polarization line shapes of the SH intensities obtained by continuous polarization variation suggested that the effect resulted from strong magnetic-dipole contributions to the nanostructure's optical properties.

3.
J Am Chem Soc ; 134(47): 19393-400, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23110583

RESUMEN

Energy transfer from photoexcited nanoparticles to their surroundings was studied for both hollow and solid gold nanospheres (HGNs and SGNs, respectively) using femtosecond time-resolved transient extinction spectroscopy. HGNs having outer diameters ranging from 17 to 78 nm and fluid-filled cavities were synthesized by a sacrificial galvanic replacement method. The HGNs exhibited energy transfer half times that ranged from 105 ± 10 ps to 1010 ± 80 ps as the total particle surface area increased from 1005 to 28,115 nm(2). These data showed behaviors that were categorized into two classes: energy transfer from HGNs to interior fluids that were confined to cavities with radii <15 nm and ≥15 nm. Energy transfer times were also determined for solid gold nanospheres (SGNs) having radii spanning 9-30 nm, with a similar size dependence where the relaxation times increased from 140 ± 10 to 310 ± 15 ps with increasing nanoparticle size. Analysis of the size-dependent energy transfer half times revealed that the distinct relaxation rate constants observed for particle-to-surroundings energy transfer for HGNs with small cavities were the result of reduced thermal conductivity of confined fluids. These data indicate that the thermal conductivity of HGN cavity-confined fluids is approximately one-half as great as it is for bulk liquid water. For all HGNs and SGNs studied, energy dissipation through the solvent and transfer across the particle/surroundings interface both contributed to the energy relaxation process. The current data illustrated the potential of fluid-filled hollow nanostructures to gain insight into the properties of confined fluids.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Transferencia de Energía , Tamaño de la Partícula , Procesos Fotoquímicos , Propiedades de Superficie , Factores de Tiempo
4.
Nano Lett ; 11(8): 3258-62, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21714493

RESUMEN

Hollow gold nanospheres (HGNs) were excited with ultrashort laser pulses, and the coherent vibrational response was examined using femtosecond time-resolved transient absorption. The results indicated that HGNs support an isotropic mode, resulting in periodic modulation of the surface plasmon differential absorption. Two different categories of coherent acoustic vibrations, which depend on particle dimensions, were observed for HGNs. Further, the vibration launching mechanism was dependent upon the dimensions of the HGN. Coherent vibrations in HGNs characterized by small outer radii (<10 nm) and low cavity-radius-to-outer-shell radius aspect ratios (<0.5) were excited by a direct mechanism, whereas the vibrations observed for the larger particles (>25 nm OR) with higher aspect ratios (>0.5) resulted from an indirect mechanism. These findings may be significant for developing a predictive understanding of nanostructure optical and mechanical properties.


Asunto(s)
Acústica , Oro , Nanopartículas del Metal , Resonancia por Plasmón de Superficie , Vibración
5.
Phys Chem Chem Phys ; 13(48): 21585-92, 2011 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-22052194

RESUMEN

Electronic energy relaxation in hollow gold nanospheres (HGNs) was studied using femtosecond time-resolved transient absorption spectroscopy. A range of HGNs having outer diameter-to-shell thickness aspect ratios of 3.5 to 9.5 were synthesized by a galvanic replacement method. The HGNs exhibited electron-phonon relaxation times that decreased from 1.18 ± 0.16 to 0.59 ± 0.08 ps as the aspect ratio increased over this range. The corresponding electron-phonon coupling constants, G, ranged from (1.67 ± 0.22) to (3.33 ± 0.45) × 10(16) W m(-3) K(-1). Electron-phonon coupling was also determined for solid gold nanospheres (SGNs) with diameters spanning 20 nm to 83 nm; no size dependence was observed for these structures. The HGNs with high aspect ratios exhibited larger electron-phonon coupling constants than the SGNs, whose average G value was (1.9 ± 0.2) × 10(16) W m(-3) K(-1). By comparison, low-aspect ratio HGNs exhibited values comparable to SGNs. The electron-phonon coupling of high-aspect ratio HGNs was also influenced by the surrounding fluid dielectric; slightly smaller G values were obtained when methanol was the solvent as opposed to water. This coupling enhancement observed for high-aspect ratio HGNs was attributed to the large surface to volume ratio of these structures, which results in non-negligible contributions from the environment.

6.
J Am Chem Soc ; 132(44): 15782-9, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-20961113

RESUMEN

Hollow gold nanospheres (HGNs) ranging from 29.9 nm/8.5 nm (outer diameter/shell thickness) to 51.5 nm/4.5 nm and having aspect ratios spanning 3.5-11.7 were employed to investigate the ability to tailor charge oscillations of HGN aggregates by systematic variation of particle aspect ratio, interparticle gap, and nanosphere inner surface spatial separation. Altering these properties in aggregated HGNs led to control over the interparticle plasmon resonance. Thiol-mediated aggregation was accomplished using either ethanedithiol or cysteine, resulting in dimeric structures in which monomer subunits were spatially separated by <3 Å and 1.2 ± 0.7 nm, respectively. Particle dimensions and separation distances were confirmed by transmission electron microscopy. Experimental absorption spectra obtained for high-aspect ratio nanospheres dimerized using ethanedithiol exhibited an obvious blue shift of the surface plasmon resonance (SPR) relative to that observed for the native, monomeric HGN. This spectral difference likely results from a charge-transfer plasmon resonance at the dimer interface. The extent of the blue shift was dependent upon shell thickness. Dimers comprised of thin-shelled HGNs exhibited the largest shift; aggregates containing HGNs with thick shells (≥7 nm) did not display a significant SPR shift when the individual particles were in contact. By comparison, all cysteine-induced aggregates examined in this study displayed large interparticle gaps (>1 nm) and a red-shifted SPR, regardless of particle dimensions. This effect can be described fully by a surface mode coupling model. All experimental measurements were verified by finite difference time domain calculations. In addition, simulated electric field maps highlighted the importance of the inner HGN surface in the interparticle coupling mechanism. These findings, which describe structure-dependent SPR properties, may be significant for applications derived from the plasmonic nanostructure platform.

7.
J Am Chem Soc ; 131(39): 13892-3, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19788321

RESUMEN

Electronic relaxation and interparticle electromagnetic coupling processes in hollow gold nanospheres (HGNs) and HGN aggregates are described. These plasmon-tunable HGNs exhibit an unexpected, but systematic, blue shift of the surface plasmon resonance spectral position when the particles are aggregated. Femtosecond transient absorption measurements and finite-difference time-domain (FDTD) calculations are used to demonstrate that this blue shift is the result of delocalization of the Fermi-gas over multiple particles, an effect not observed with solid spherical particles. The ultrafast electron-phonon coupling lifetimes for the thin-shelled HGNs increase upon aggregation, indicating significant enhancement in interparticle electromagnetic coupling. For instance, a 48-nm HGN with a shell thickness of 7 nm shows ultrafast electron-phonon coupling with a lifetime of 300 +/- 100 fs, and upon aggregation, this lifetime increases to 730 +/- 140 fs. The experimental data strongly suggest that confinement effects in HGNs allow for enhanced energy transport over nanometer distances and this effect can be applied to developing more efficient devices, including photovoltaics.

8.
ACS Nano ; 10(12): 11449-11458, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27936574

RESUMEN

Single-walled carbon nanotubes (SWCNTs) have potential to act as light-harvesting elements in thin film photovoltaic devices, but performance is in part limited by the efficiency of exciton diffusion processes within the films. Factors contributing to exciton transport can include film morphology encompassing nanotube orientation, connectivity, and interaction geometry. Such factors are often defined by nanotube surface structures that are not yet well understood. Here, we present the results of a combined pump-probe and photoluminescence imaging study of polyfluorene (PFO)-wrapped (6,5) and (7,5) SWCNTs that provide additional insight into the role played by polymer structures in defining exciton transport. Pump-probe measurements suggest exciton transport occurs over larger length scales in films composed of PFO-wrapped (7,5) SWCNTs, compared to those prepared from PFO-bpy-wrapped (6,5) SWCNTs. To explore the role the difference in polymer structure may play as a possible origin of differing transport behaviors, we performed a photoluminescence imaging study of individual polymer-wrapped (6,5) and (7,5) SWCNTs. The PFO-bpy-wrapped (6,5) SWCNTs showed more uniform intensity distributions along their lengths, in contrast to the PFO-wrapped (7,5) SWCNTs, which showed irregular, discontinuous intensity distributions. These differences likely originate from differences in surface coverage and suggest the PFO wrapping on (7,5) nanotubes produces a more open surface structure than is available with the PFO-bpy wrapping of (6,5) nanotubes. The open structure likely leads to improved intertube coupling that enhances exciton transport within the (7,5) films, consistent with the results of our pump-probe measurements.

9.
J Phys Chem Lett ; 7(10): 1794-9, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27127916

RESUMEN

The efficiency of thin-film organic photovoltaic (OPV) devices relies heavily upon the transport of excitons to type-II heterojunction interfaces, where there is sufficient driving force for exciton dissociation and ultimately the formation of charge carriers. Semiconducting single-walled carbon nanotubes (SWCNTs) are strong near-infrared absorbers that form type-II heterojunctions with fullerenes such as C60. Although the efficiencies of SWCNT-fullerene OPV devices have climbed over the past few years, questions remain regarding the fundamental factors that currently limit their performance. In this study, we determine the exciton diffusion length in the C60 layer of SWCNT-C60 bilayer active layers using femtosecond transient absorption measurements. We demonstrate that hole transfer from photoexcited C60 molecules to SWCNTs can be tracked by the growth of narrow spectroscopic signatures of holes in the SWCNT "reporter layer". In bilayers with thick C60 layers, the SWCNT charge-related signatures display a slow rise over hundreds of picoseconds, reflecting exciton diffusion through the C60 layer to the interface. A model based on exciton diffusion with a Beer-Lambert excitation profile, as well as Monte Carlo simulations, gives the best fit to the data as a function of C60 layer thickness using an exciton diffusion length of approximately 5 nm.


Asunto(s)
Fulerenos/química , Nanotubos de Carbono/química , Difusión , Método de Montecarlo
10.
J Phys Chem Lett ; 7(3): 418-25, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26757105

RESUMEN

In spite of the rapid rise of metal organic halide perovskites for next-generation solar cells, little quantitative information on the electronic structure of interfaces of these materials is available. The present study characterizes the electronic structure of interfaces between semiconducting single walled carbon nanotube (SWCNT) contacts and a prototypical methylammonium lead iodide (MAPbI3) absorber layer. Using photoemission spectroscopy we provide quantitative values for the energy levels at the interface and observe the formation of an interfacial dipole between SWCNTs and perovskite. This process can be ascribed to electron donation from the MAPbI3 to the adjacent SWCNT making the nanotube film n-type at the interface and inducing band bending throughout the SWCNT layer. We then use transient absorbance spectroscopy to correlate this electronic alignment with rapid and efficient photoexcited charge transfer. The results indicate that SWCNT transport and contact layers facilitate rapid charge extraction and suggest avenues for enhancing device performance.

11.
Nanoscale ; 7(15): 6556-66, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25790468

RESUMEN

Semiconducting single-walled carbon nanotubes (s-SWCNTs) are promising candidates as the active layer in photovoltaics (PV), particularly for niche applications where high infrared absorbance and/or semi-transparent solar cells are desirable. Most current fabrication strategies for SWCNT PV devices suffer from relatively high surface roughness and lack nanometer-scale deposition precision, both of which may hamper the reproducible production of ultrathin devices. Additionally, detailed optical models of SWCNT PV devices are lacking, due in part to a lack of well-defined optical constants for high-purity s-SWCNT thin films. Here, we present an optical model that accurately reconstructs the shape and magnitude of spectrally resolved external quantum efficiencies for ultrathin (7,5) s-SWCNT/C60 solar cells that are deposited by ultrasonic spraying. The ultrasonic spraying technique enables thickness tuning of the s-SWCNT layer with nanometer-scale precision, and consistently produces devices with low s-SWCNT film average surface roughness (Rq of <5 nm). Our optical model, based entirely on measured optical constants of each layer within the device stack, enables quantitative predictions of thickness-dependent relative photocurrent contributions of SWCNTs and C60 and enables estimates of the exciton diffusion lengths within each layer. These results establish routes towards rational performance improvements and scalable fabrication processes for ultra-thin SWCNT-based solar cells.

12.
ACS Nano ; 8(8): 8573-81, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25019648

RESUMEN

The time scales for interfacial charge separation and recombination play crucial roles in determining efficiencies of excitonic photovoltaics. Near-infrared photons are harvested efficiently by semiconducting single-walled carbon nanotubes (SWCNTs) paired with appropriate electron acceptors, such as fullerenes (e.g., C60). However, little is known about crucial photochemical events that occur on femtosecond to nanosecond time scales at such heterojunctions. Here, we present transient absorbance measurements that utilize a distinct spectroscopic signature of charges within SWCNTs, the absorbance of a trion quasiparticle, to measure both the ultrafast photoinduced electron transfer time (τpet) and yield (ϕpet) in photoexcited SWCNT­C60 bilayer films. The rise time of the trion-induced absorbance enables the determination of the photoinduced electron transfer (PET) time of τpet ≤ 120 fs, while an experimentally determined trion absorbance cross section reveals the yield of charge transfer (ϕpet ≈ 38 ± 3%). The extremely fast electron transfer times observed here are on par with some of the best donor:acceptor pairs in excitonic photovoltaics and underscore the potential for efficient energy harvesting in SWCNT-based devices.

13.
J Phys Chem Lett ; 4(7): 1109-19, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26282029

RESUMEN

The characteristic feature of noble metal nanoparticles is the localized surface plasmon resonance (LSPR). Plasmon-supporting nanoparticles can function as transducers because of the LSPR's ability to amplify electromagnetic fields and its sensitivity to changes in the surrounding dielectric. The performance of these materials in transducer applications is inherently related to nanoparticle structure. This Perspective describes the use of femtosecond laser-based spectroscopies to elucidate the nanoscale structure-property interplay. First, femtosecond time-resolved transient extinction measurements that probe the LSPR following nanoparticle photoexcitation are described. These measurements illustrate how nanostructure dimensions influence sensitivity to changes in the interfacial dielectric. The combination of single-particle nonlinear optical (NLO) measurements and electron microscopy is also used to describe the symmetry of plasmon surface fields in nanoparticle assemblies. In particular, the use of continuous polarization variation-detected second-harmonic generation to describe electric and magnetic dipolar contributions to NLO properties is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA