Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 27(46): 46LT02, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27734804

RESUMEN

As the major iron storage protein, ferritin stores and releases iron for maintaining the balance of iron in fauna, flora, and bacteria. We present an investigation of the morphology and iron loading of ferritin (from equine spleen) using aberration-corrected high angle annular dark field scanning transmission electron microscopy. Atom counting method, with size selected Au clusters as mass standards, was employed to determine the number of iron atoms in the nanoparticle core of each ferritin protein. Quantitative analysis shows that the nuclearity of iron atoms in the mineral core varies from a few hundred iron atoms to around 5000 atoms. Moreover, a relationship between the iron loading and iron core morphology is established, in which mineral core nucleates from a single nanoparticle, then grows along the protein shell before finally forming either a solid or hollow core structure.

2.
PLoS One ; 10(9): e0138240, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26378798

RESUMEN

Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease.


Asunto(s)
Alginatos/química , Quelantes/química , Transporte Iónico/fisiología , Compuestos de Hierro/química , Hierro/química , Línea Celular Tumoral , Humanos , Hierro/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión de Rastreo , Nanopartículas/química
3.
Nano Res ; 8(3): 774-789, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31031888

RESUMEN

In the past few years there has been a growth in the use of nano-particles for stabilizing lipid membranes with embedded proteins. These bionanoparticles provide a solution to the challenging problem of membrane protein isolation by maintaining a lipid bilayer essential to protein integrity and activity. We have described the use of an amphipathic polymer (Poly(styrene-co-maleic acid); SMA) to produce discoidal nanoparticles that contain a lipid bilayer with embedded protein. However the structure of the nanoparticle itself has not yet been determined. This leaves a major gap in understanding how the SMA stabilizes the encapsulated bilayer and how the bilayer relates physically and structurally to an unecapsulated lipid bilayer. In this paper we address this issue by describing the structure of the SMA Lipid Particle (SMALP) using data from small angle neutron scattering (SANS), electron microscopy (EM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (NMR). We show that the particle is disc shaped containing a polymer "bracelet" encircling the lipid bilayer. The structure and orientation of the individual components within the bilayer and polymer are determined showing that styrene moieties within SMA intercalate between the lipid acyl chains. The dimensions of the encapsulated bilayer are also determined and match those measured for a natural membrane. Taken together, the description of structure of the SMALP forms the foundation of future development and applications of SMALPs in membrane protein production and analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA