Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Muscle Nerve ; 69(2): 185-198, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38112169

RESUMEN

INTRODUCTION/AIMS: Diagnosis of small-fiber neuropathy (SFN) is hampered by its subjective symptoms and signs. Confirmatory testing is insufficiently available and expensive, so predictive examinations have value. However, few support the 2020 SFN consensus-case-definition requirements or were validated for non-diabetes neuropathies. Thus we developed the Massachusetts General Hospital Neuropathy Exam Tool (MAGNET) and measured diagnostic performance in 160 symptomatic patients evaluated for length-dependent SFN from any cause and 37 healthy volunteers. METHODS: We compared prevalences of abnormalities (vital signs, pupil responses, lower-limb appearance, pin, light touch, vibration and position sensitivity, great-toe strength, muscle stretch reflexes), and validated diagnostic performance against objective SFN tests: lower-leg skin-biopsy epidermal neurite densities and autonomic function testing (AFT). Sensitivity/specificity, feasibility, test-retest and inter-rater reliability, and convergence with the Utah Early Neuropathy Scale were calculated. RESULTS: Patients' ages averaged 48.5 ± 14.7 years and 70.6% were female. Causes of neuropathy varied, remaining unknown in 59.5%. Among the 46 with abnormal skin biopsies, the most prevalent abnormality was reduced pin sharpness at the toes (71.7%). Inter-rater reliability, test-retest reliability, and convergent validity excelled (range = 91.3-95.6%). Receiver operating characteristics comparing all symptomatic patients versus healthy controls indicated that a MAGNET threshold score of 14 maximized predictive accuracy for skin biopsies (0.74) and a 30 cut-off maximized accuracy for predicting AFT (0.60). Analyzing patients with any abnormal neuropathy-test results identified areas-under-the-curves of 0.87-0.89 for predicting a diagnostic result, accuracy = 0.80-0.89, and Youden's index = 0.62. Overall, MAGNET was 80%-85% accurate for stratifying patients with abnormal versus normal neuropathy test results. DISCUSSION: MAGNET quickly generates research-quality metrics during clinical examinations.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Neuropatía de Fibras Pequeñas , Humanos , Femenino , Masculino , Reproducibilidad de los Resultados , Hospitales Generales , Imanes , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/patología , Neuropatía de Fibras Pequeñas/patología , Piel/patología , Biopsia
2.
Neuroimage ; 184: 566-576, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30243973

RESUMEN

Access to MRI is limited for patients with deep brain stimulation (DBS) implants due to safety hazards, including radiofrequency (RF) heating of tissue surrounding the leads. Computational models provide an exquisite tool to explore the multi-variate problem of RF heating and help better understand the interaction of electromagnetic fields and biological tissues. This paper presents a computational approach to assess RF-induced heating, in terms of specific absorption rate (SAR) in the tissue, around the tip of bilateral DBS leads during MRI at 64MHz/1.5 T and 127 MHz/3T. Patient-specific realistic lead models were constructed from post-operative CT images of nine patients operated for sub-thalamic nucleus DBS. Finite element method was applied to calculate the SAR at the tip of left and right DBS contact electrodes. Both transmit head coils and transmit body coils were analyzed. We found a substantial difference between the SAR and temperature rise at the tip of right and left DBS leads, with the lead contralateral to the implanted pulse generator (IPG) exhibiting up to 7 times higher SAR in simulations, and up to 10 times higher temperature rise during measurements. The orientation of incident electric field with respect to lead trajectories was explored and a metric to predict local SAR amplification was introduced. Modification of the lead trajectory was shown to substantially reduce the heating in phantom experiments using both conductive wires and commercially available DBS leads. Finally, the surgical feasibility of implementing the modified trajectories was demonstrated in a patient operated for bilateral DBS.


Asunto(s)
Estimulación Encefálica Profunda , Electrodos Implantados , Calor , Imagen por Resonancia Magnética/efectos adversos , Modelos Teóricos , Simulación por Computador , Estimulación Encefálica Profunda/instrumentación , Campos Electromagnéticos , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Ondas de Radio
3.
IEEE Trans Microw Theory Tech ; 67(3): 1265-1273, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31607756

RESUMEN

Patients with implanted medical devices such as deep brain stimulation or spinal cord stimulation are often unable to receive magnetic resonance imaging (MRI). This is because once the device is within the radiofrequency (RF) field of the MRI scanner, electrically conductive leads act as antenna, amplifying the RF energy deposition in the tissue and causing possible excessive tissue heating. Here we propose a novel concept in lead design in which 40cm lead wires are coated with a ~1.2mm layer of high dielectric constant material (155 < ε r < 250) embedded in a weakly conductive insulation (σ = 20S/m). The technique called High-Dielectric Capacitive Bleeding of Current, or CBLOC, works by forming a distributed capacitance along the lengths of the lead, efficiently dissipating RF energy before it reaches the exposed tip. Measurements during RF exposure at 64 MHz and 123 MHz demonstrated that CBLOC leads generated 20-fold less heating at 1.5 T, and 40-fold less heating at 3 T compared to control leads. Numerical simulations of RF exposure at 297 MHz (7T) predicted a 15-fold reduction in specific absorption rate (SAR) of RF energy around the tip of CBLOC leads compared to control leads.

4.
PLoS One ; 14(8): e0220043, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31390346

RESUMEN

Patients with deep brain stimulation (DBS) implants can significantly benefit from magnetic resonance imaging (MRI), however access to MRI is restricted in these patients because of safety concerns due to RF heating of the leads. Recently we introduced a patient-adjustable reconfigurable transmit coil for low-SAR imaging of DBS at 1.5T. A previous simulation study demonstrated a substantial reduction in the local SAR around single DBS leads in 9 unilateral lead models. This work reports the first experimental results of temperature measurement at the tips of bilateral DBS leads with realistic trajectories extracted from postoperative CT images of 10 patients (20 leads in total). A total of 200 measurements were performed to record temperature rise at the tips of the leads during 2 minutes of scanning with the coil rotated to cover all accessible rotation angles. In all patients, we were able to find an optimum coil rotation angle and reduced the heating of both left and right leads to a level below the heating produced by the body coil. An average heat reduction of 65% was achieved for bilateral leads. When considering each lead alone, an average heat reduction of 80% was achieved. Our results suggest that reconfigurable coil technology introduces a promising approach for imaging of patients with DBS implants.


Asunto(s)
Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/instrumentación , Calor , Imagen por Resonancia Magnética/instrumentación , Prótesis e Implantes , Ondas de Radio , Rotación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA