Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Rev Mol Cell Biol ; 14(10): 617-29, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24061228

RESUMEN

Protein quality control within the cell requires the interplay of many molecular chaperones and proteases. When this quality control system is disrupted, polypeptides follow pathways leading to misfolding, inactivity and aggregation. Among the repertoire of molecular chaperones are remarkable proteins that forcibly untangle protein aggregates, called disaggregases. Structural and biochemical studies have led to new insights into how these proteins collaborate with co-chaperones and utilize ATP to power protein disaggregation. Understanding how energy-dependent protein disaggregating machines function is universally important and clinically relevant, as protein aggregation is linked to medical conditions such as Alzheimer's disease, Parkinson's disease, amyloidosis and prion diseases.


Asunto(s)
Chaperonas Moleculares/genética , Péptido Hidrolasas/metabolismo , Enfermedades por Prión/genética , Proteínas/química , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Amiloidosis/genética , Amiloidosis/patología , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedades por Prión/patología , Conformación Proteica , Pliegue de Proteína , Desplegamiento Proteico , Proteínas/genética , Proteínas/metabolismo , Control de Calidad
2.
Alcohol Clin Exp Res ; 46(8): 1423-1432, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35778776

RESUMEN

BACKGROUND: Mixing alcohol with caffeinated energy drinks is a common practice among young people. Consumption of alcohol mixed in energy drink is associated with increased risk of binge drinking and alcohol dependence. The purpose of this study was to determine whether voluntary intermittent access to alcohol mixed in energy drink in adolescent rats alters adult self-administration of alcohol, anxiety, and memory. METHODS: For 10 weeks in the home-cage, two groups of adolescent female Sprague-Dawley rats had intermittent access to energy drink (ED) or 10% alcohol mixed in energy drink (AmED) with water concurrently available. Other rat groups had daily continuous access to ED or AmED. Anxiety was measured with an open field test and memory was assessed with a novel place recognition test. For self-administration, rats pressed levers for 10% alcohol alone on a fixed ratio (FR1) and on a progressive ratio (PR). RESULTS: Intermittent access to AmED generated greater intake during the initial 30 min of access (AmED 1.70 ± 0.04 g/kg vs. ED 1.01 ± 0.06 g/kg) and during the subsequent 24 h (AmED 7.04 ± 0.25 g/kg vs. ED 5.60 ± 0.29 g/kg). Intermittent AmED caused a significant but small decrease in anxiety while neither ED nor AmED altered memory. During alcohol self-administration, group differences emerged only during PR testing during which intermittent AmED rats responded more than all other groups. CONCLUSIONS: These findings suggest that intermittent access to AmED generates binge-like consumption that supports human findings that AmED generates greater alcohol consumption. Furthermore, experience with AmED may alter the motivational properties of alcohol into adulthood without necessarily causing a major impact on anxiety or memory.


Asunto(s)
Bebidas Energéticas , Adolescente , Adulto , Consumo de Bebidas Alcohólicas/efectos adversos , Bebidas Alcohólicas/efectos adversos , Animales , Ansiedad , Bebidas Energéticas/efectos adversos , Etanol , Femenino , Humanos , Ratas , Ratas Sprague-Dawley
3.
Proc Natl Acad Sci U S A ; 116(25): 12285-12294, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31160467

RESUMEN

Heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone involved in ATP-dependent client protein remodeling and activation. It also functions as a protein holdase, binding and stabilizing clients in an ATP-independent process. Hsp90 remodels over 300 client proteins and is essential for cell survival in eukaryotes. In bacteria, Hsp90 is a highly abundant protein, although very few clients have been identified and it is not essential for growth in many bacterial species. We previously demonstrated that in Escherichia coli, Hsp90 causes cell filamentation when expressed at high levels. Here, we have explored the cause of filamentation and identified a potentially important client of E. coli Hsp90 (Hsp90Ec), FtsZ. We observed that FtsZ, a bacterial tubulin homolog essential for cell division, fails to assemble into FtsZ rings (divisomes) in cells overexpressing Hsp90Ec Additionally, Hsp90Ec interacts with FtsZ and inhibits polymerization of FtsZ in vitro, in an ATP-independent holding reaction. The FtsZ-Hsp90Ec interaction involves residues in the client-binding region of Hsp90Ec and in the C-terminal tail of FtsZ, where many cell-division proteins and regulators interact. We observed that E. coli deleted for the Hsp90Ec gene htpG turn over FtsZ more rapidly than wild-type cells. Additionally, the length of ΔhtpG cells is reduced compared to wild-type cells. Altogether, these results suggest that Hsp90Ec is a modulator of cell division, and imply that the polypeptide-holding function of Hsp90 may be a biologically important chaperone activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Tubulina (Proteína)/metabolismo , División Celular , Proteínas HSP90 de Choque Térmico/fisiología , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiología
4.
Proc Natl Acad Sci U S A ; 115(10): E2210-E2219, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463764

RESUMEN

Heat shock protein 90 (Hsp90) is a highly conserved ATP-dependent molecular chaperone that is essential in eukaryotes. It is required for the activation and stabilization of more than 200 client proteins, including many kinases and steroid hormone receptors involved in cell-signaling pathways. Hsp90 chaperone activity requires collaboration with a subset of the many Hsp90 cochaperones, including the Hsp70 chaperone. In higher eukaryotes, the collaboration between Hsp90 and Hsp70 is indirect and involves Hop, a cochaperone that interacts with both Hsp90 and Hsp70. Here we show that yeast Hsp90 (Hsp82) and yeast Hsp70 (Ssa1), directly interact in vitro in the absence of the yeast Hop homolog (Sti1), and identify a region in the middle domain of yeast Hsp90 that is required for the interaction. In vivo results using Hsp90 substitution mutants showed that several residues in this region were important or essential for growth at high temperature. Moreover, mutants in this region were defective in interaction with Hsp70 in cell lysates. In vitro, the purified Hsp82 mutant proteins were defective in direct physical interaction with Ssa1 and in protein remodeling in collaboration with Ssa1 and cochaperones. This region of Hsp90 is also important for interactions with several Hsp90 cochaperones and client proteins, suggesting that collaboration between Hsp70 and Hsp90 in protein remodeling may be modulated through competition between Hsp70 and Hsp90 cochaperones for the interaction surface.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
J Biol Chem ; 294(6): 2109-2120, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30401745

RESUMEN

Heat shock proteins 90 (Hsp90) and 70 (Hsp70) are two families of highly conserved ATP-dependent molecular chaperones that fold and remodel proteins. Both are important components of the cellular machinery involved in protein homeostasis and participate in nearly every cellular process. Although Hsp90 and Hsp70 each carry out some chaperone activities independently, they collaborate in other cellular remodeling reactions. In eukaryotes, both Hsp90 and Hsp70 function with numerous Hsp90 and Hsp70 co-chaperones. In contrast, bacterial Hsp90 and Hsp70 are less complex; Hsp90 acts independently of co-chaperones, and Hsp70 uses two co-chaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70, with an emphasis on bacterial chaperones. We describe the structure and conformational dynamics of these chaperones and their interactions with each other and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide the groundwork for understanding the more complex eukaryotic Hsp90 system and its modulation by Hsp90 co-chaperones.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Pliegue de Proteína , Animales , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/genética , Humanos
6.
Proc Natl Acad Sci U S A ; 108(20): 8206-11, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21525416

RESUMEN

Molecular chaperones are proteins that assist the folding, unfolding, and remodeling of other proteins. In eukaryotes, heat shock protein 90 (Hsp90) proteins are essential ATP-dependent molecular chaperones that remodel and activate hundreds of client proteins with the assistance of cochaperones. In Escherichia coli, the activity of the Hsp90 homolog, HtpG, has remained elusive. To explore the mechanism of action of E. coli Hsp90, we used in vitro protein reactivation assays. We found that E. coli Hsp90 promotes reactivation of heat-inactivated luciferase in a reaction that requires the prokaryotic Hsp70 chaperone system, known as the DnaK system. An Hsp90 ATPase inhibitor, geldanamycin, inhibits luciferase reactivation demonstrating the importance of the ATP-dependent chaperone activity of E. coli Hsp90 during client protein remodeling. Reactivation also depends upon the ATP-dependent chaperone activity of the DnaK system. Our results suggest that the DnaK system acts first on the client protein, and then E. coli Hsp90 and the DnaK system collaborate synergistically to complete remodeling of the client protein. Results indicate that E. coli Hsp90 and DnaK interact in vivo and in vitro, providing additional evidence to suggest that E. coli Hsp90 and the DnaK system function together.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Proteínas HSP70 de Choque Térmico/fisiología , Proteínas HSP90 de Choque Térmico/fisiología , Renaturación de Proteína , Adenosina Trifosfatasas/metabolismo , Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/química , Luciferasas/química , Modelos Moleculares , Unión Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína
7.
Proc Natl Acad Sci U S A ; 108(17): 6915-20, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21474779

RESUMEN

Yeast Hsp104 and its bacterial homolog, ClpB, are Clp/Hsp100 molecular chaperones and AAA+ ATPases. Hsp104 and ClpB collaborate with the Hsp70 and DnaK chaperone systems, respectively, to retrieve and reactivate stress-denatured proteins from aggregates. The action of Hsp104 and ClpB in promoting cell survival following heat stress is species-specific: Hsp104 cannot function in bacteria and ClpB cannot act in yeast. To determine the regions of Hsp104 and ClpB necessary for this specificity, we tested chimeras of Hsp104 and ClpB in vivo and in vitro. We show that the Hsp104 and ClpB middle domains dictate the species-specificity of Hsp104 and ClpB for cell survival at high temperature. In protein reactivation assays in vitro, chimeras containing the Hsp104 middle domain collaborate with Hsp70 and those with the ClpB middle domain function with DnaK. The region responsible for the specificity is within helix 2 and helix 3 of the middle domain. Additionally, several mutants containing amino acid substitutions in helix 2 of the ClpB middle domain are defective in protein disaggregation in collaboration with DnaK. In a bacterial two-hybrid assay, DnaK interacts with ClpB and with chimeras that have the ClpB middle domain, implying that species-specificity is due to an interaction between DnaK and the middle domain of ClpB. Our results suggest that the interaction between Hsp70/DnaK and helix 2 of the middle domain of Hsp104/ClpB determines the specificity required for protein disaggregation both in vivo and in vitro, as well as for cellular thermotolerance.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Endopeptidasa Clp , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Trends Biochem Sci ; 34(1): 40-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19008106

RESUMEN

Heat-shock protein 104 (Hsp104) and caseinolytic peptidase B (ClpB), members of the AAA+ superfamily, are molecular machines involved in disaggregating insoluble protein aggregates, a process not long ago thought to be impossible. During extreme stress they are essential for cell survival. In addition, Hsp104 regulates prion assembly and disassembly. For most of their protein remodeling activities Hsp104 and ClpB work in collaboration with the Hsp70 or DnaK chaperone systems. Together, the two chaperones catalyze protein disaggregation and reactivation by a mechanism probably involving the extraction of polypeptides from aggregates by forced unfolding and translocation through the Hsp104/ClpB central cavity. The polypeptides are then released back into the cellular milieu for spontaneous or chaperone-mediated refolding.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Secuencias de Aminoácidos , Bioquímica/métodos , Endopeptidasa Clp , Proteínas HSP70 de Choque Térmico/química , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Conformación Molecular , Unión Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Thermus thermophilus/metabolismo
9.
J Biol Chem ; 287(34): 28470-9, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22745126

RESUMEN

Protein disaggregation in Escherichia coli is carried out by ClpB, an AAA(+) (ATPases associated with various cellular activities) molecular chaperone, together with the DnaK chaperone system. Conformational changes in ClpB driven by ATP binding and hydrolysis promote substrate binding, unfolding, and translocation. Conserved pore tyrosines in both nucleotide-binding domain-1 (NBD-1) and -2 (NBD-2), which reside in flexible loops extending into the central pore of the ClpB hexamer, bind substrates. When the NBD-1 pore loop tyrosine is substituted with alanine (Y251A), ClpB can collaborate with the DnaK system in disaggregation, although activity is reduced. The N-domain has also been implicated in substrate binding, and like the NBD-1 pore loop tyrosine, it is not essential for disaggregation activity. To further probe the function and interplay of the ClpB N-domain and the NBD-1 pore loop, we made a double mutant with an N-domain deletion and a Y251A substitution. This ClpB double mutant is inactive in substrate disaggregation with the DnaK system, although each single mutant alone can function with DnaK. Our data suggest that this loss in activity is primarily due to a decrease in substrate engagement by ClpB prior to substrate unfolding and translocation and indicate an overlapping function for the N-domain and NBD-1 pore tyrosine. Furthermore, the functional overlap seen in the presence of the DnaK system is not observed in the absence of DnaK. For innate ClpB unfolding activity, the NBD-1 pore tyrosine is required, and the presence of the N-domain is insufficient to overcome the defect of the ClpB Y251A mutant.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Tirosina/metabolismo , Sustitución de Aminoácidos , Endopeptidasa Clp , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Mutación Missense , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Tirosina/genética
10.
J Mol Biol ; 435(17): 168184, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348754

RESUMEN

Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70.


Asunto(s)
Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Dominios Proteicos
11.
Proteins ; 80(12): 2758-68, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22890624

RESUMEN

ClpB reactivates aggregated proteins in cooperation with DnaK/J. The ClpB monomer contains two nucleotide-binding domains (D1, D2), a coiled-coil domain, and an N-terminal domain attached to D1 with a 17-residue-long unstructured linker containing a Gly-Gly motif. The ClpB-mediated protein disaggregation is linked to translocation of substrates through the central channel in the hexameric ClpB, but the events preceding the translocation are poorly understood. The N-terminal domains form a ring surrounding the entrance to the channel and contribute to the aggregate binding. It was suggested that the N-terminal domain's mobility that is maintained by the unstructured linker might control the efficiency of aggregate reactivation. We produced seven variants of ClpB with modified sequence of the N-terminal linker. To increase the linker's conformational flexibility, we inserted up to four Gly next to the GG motif. To decrease the linker's flexibility, we deleted the GG motif and converted it into GP and PP. We found that none of the linker modifications inhibited the basal ClpB ATPase activity or its capability to form oligomers. However, the modified linker ClpB variants showed lower reactivation rates for aggregated glucose-6-phosphate dehydrogenase and firefly luciferase and a lower aggregate-binding efficiency than wt ClpB. We conclude that the linker does not merely connect the N-terminal domain, but it supports the chaperone activity of ClpB by contributing to the efficiency of aggregate binding and disaggregation. Moreover, our results suggest that selective pressure on the linker sequence may be crucial for maintaining the optimal efficiency of aggregate reactivation by ClpB.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Endopeptidasa Clp , Proteínas de Escherichia coli/genética , Glucosafosfato Deshidrogenasa/metabolismo , Proteínas de Choque Térmico/genética , Luciferasas/metabolismo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
12.
Nat Struct Mol Biol ; 14(2): 114-22, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17259993

RESUMEN

Two members of the AAA+ superfamily, ClpB and Hsp104, collaborate with Hsp70 and Hsp40 to rescue aggregated proteins. However, the mechanisms that elicit and underlie their protein-remodeling activities remain unclear. We report that for both Hsp104 and ClpB, mixtures of ATP and ATP-gammaS unexpectedly unleash activation, disaggregation and unfolding activities independent of cochaperones. Mutations reveal how remodeling activities are elicited by impaired hydrolysis at individual nucleotide-binding domains. However, for some substrates, mixtures of ATP and ATP-gammaS abolish remodeling, whereas for others, ATP binding without hydrolysis is sufficient. Remodeling of different substrates necessitates a diverse balance of polypeptide 'holding' (which requires ATP binding but not hydrolysis) and unfolding (which requires ATP hydrolysis). We suggest that this versatility in reaction mechanism enables ClpB and Hsp104 to reactivate the entire aggregated proteome after stress and enables Hsp104 to control prion inheritance.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Endopeptidasa Clp , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Hidrólisis , Modelos Moleculares , Mutación , Factores de Terminación de Péptidos , Priones/química , Pliegue de Proteína , Estructura Terciaria de Proteína
13.
Proc Natl Acad Sci U S A ; 106(52): 22233-8, 2009 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-19940245

RESUMEN

ClpB and Hsp104 are members of the AAA+ (ATPases associated with various cellular activities) family of proteins and are molecular machines involved in thermotolerance. They are hexameric proteins containing 12 ATP binding sites with two sites per protomer. ClpB and Hsp104 possess some innate protein remodeling activities; however, they require the collaboration of the DnaK/Hsp70 chaperone system to disaggregate and reactivate insoluble aggregated proteins. We investigated the mechanism by which ClpB couples ATP utilization to protein remodeling with and without the DnaK system. When wild-type ClpB, which is unable to remodel proteins alone in the presence of ATP, was mixed with a ClpB mutant that is unable to hydrolyze ATP, the heterohexamers surprisingly gained protein remodeling activity. Optimal protein remodeling by the heterohexamers in the absence of the DnaK system required approximately three active and three inactive protomers. In addition, the location of the active and inactive ATP binding sites in the hexamer was not important. The results suggest that in the absence of the DnaK system, ClpB acts by a probabilistic mechanism. However, when we measured protein disaggregation by ClpB heterohexamers in conjunction with the DnaK system, incorporation of a single inactive ClpB subunit blocked activity, supporting a sequential mechanism of ATP utilization. Taken together, the results suggest that the mechanism of ATP utilization by ClpB is adaptable and can vary depending on the specific substrate and the presence of the DnaK system.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Sustitución de Aminoácidos , Sitios de Unión/genética , Endopeptidasa Clp , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Hidrólisis , Cinética , Modelos Moleculares , Complejos Multiproteicos , Mutagénesis Sitio-Dirigida , Estructura Cuaternaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
J Mol Biol ; 431(15): 2729-2746, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31125567

RESUMEN

Members of the Hsp90 and Hsp70 families of molecular chaperones are imp\ortant for the maintenance of protein homeostasis and cellular recovery following environmental stresses, such as heat and oxidative stress. Moreover, the two chaperones can collaborate in protein remodeling and activation. In higher eukaryotes, Hsp90 and Hsp70 form a functionally active complex with Hop (Hsp90-Hsp70 organizing protein) acting as a bridge between the two chaperones. In bacteria, which do not contain a Hop homolog, Hsp90 and Hsp70, DnaK, directly interact during protein remodeling. Although yeast possesses a Hop-like protein, Sti1, Hsp90, and Hsp70 can directly interact in yeast in the absence of Sti1. Previous studies showed that residues in the middle domain of Escherichia coli Hsp90 are important for interaction with the J-protein binding region of DnaK. The results did not distinguish between the possibility that (i) these sites were involved in direct interaction and (ii) the residues in these sites participate in conformational changes which are transduced to other sites on Hsp90 and DnaK that are involved in the direct interaction. Here we show by crosslinking experiments that the direct interaction is between a site in the middle domain of Hsp90 and the J-protein binding site of Hsp70 in both E. coli and yeast. Moreover, J-protein promotes the Hsp70-Hsp90 interaction in the presence of ATP, likely by converting Hsp70 into the ADP-bound conformation. The identification of the protein-protein interaction site is anticipated to lead to a better understanding of the collaboration between the two chaperones in protein remodeling.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/química , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
15.
Methods Mol Biol ; 1709: 199-207, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177661

RESUMEN

Bacterial Hsp90 is an ATP-dependent molecular chaperone involved in protein remodeling and activation. The E. coli Hsp90, Hsp90Ec, collaborates in protein remodeling with another ATP-dependent chaperone, DnaK, the E. coli Hsp70. Both Hsp90Ec and DnaK hydrolyze ATP and client (substrate) proteins stimulate the hydrolysis. Additionally, ATP hydrolysis by the combination of Hsp90Ec and DnaK is synergistically stimulated in the presence of client (substrate). Here, we describe two steady-state ATPase assays used to monitor ATP hydrolysis by Hsp90Ec and DnaK as well as the synergistic stimulation of ATP hydrolysis by the combination of Hsp90Ec and DnaK in the presence of a client (substrate). The first assay is a spectrophotometric assay based on enzyme-coupled reactions that utilize the ADP formed during ATP hydrolysis to oxidize NADH. The second assay is a more sensitive method that directly quantifies the radioactive inorganic phosphate released following the hydrolysis of [γ-33P] ATP or [γ-32P] ATP.


Asunto(s)
Pruebas de Enzimas/métodos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Adenosina Trifosfatasas/análisis , Adenosina Trifosfatasas/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/análisis , Proteínas HSP70 de Choque Térmico/análisis , Proteínas HSP90 de Choque Térmico/análisis , Cinética
16.
J Mol Biol ; 429(6): 858-872, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28013030

RESUMEN

The 90-kDa heat shock protein (Hsp90) is a widely conserved and ubiquitous molecular chaperone that participates in ATP-dependent protein remodeling in both eukaryotes and prokaryotes. It functions in conjunction with Hsp70 and the Hsp70 cochaperones, an Hsp40 (J-protein) and a nucleotide exchange factor. In Escherichia coli, the functional collaboration between Hsp90Ec and Hsp70, DnaK, requires that the two chaperones directly interact. We used molecular docking to model the interaction of Hsp90Ec and DnaK. The top-ranked docked model predicted that a region in the nucleotide-binding domain (NBD) of DnaK interacted with a region in the middle domain of Hsp90Ec. We then made substitution mutants in DnaK residues suggested by the model to interact with Hsp90Ec. Of the 12 mutants tested, 11 were defective or partially defective in their ability to interact with Hsp90Ecin vivo in a bacterial two-hybrid assay and in vitro in a bio-layer interferometry assay. These DnaK mutants were also defective in their ability to function collaboratively in protein remodeling with Hsp90Ec but retained the ability to act with DnaK cochaperones. Taken together, these results suggest that a specific region in the NBD of DnaK is involved in the interaction with Hsp90Ec, and this interaction is functionally important. Moreover, the region of DnaK that we found to be necessary for Hsp90Ec binding includes residues that are also involved in J-protein binding, suggesting a functional interplay among DnaK, DnaK cochaperones, and Hsp90Ec.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Mapeo de Interacción de Proteínas , Análisis Mutacional de ADN , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/genética , Simulación del Acoplamiento Molecular , Unión Proteica , Técnicas del Sistema de Dos Híbridos
17.
Front Mol Biosci ; 4: 36, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28611991

RESUMEN

ClpB of E. coli and yeast Hsp104 are homologous molecular chaperones and members of the AAA+ (ATPases Associated with various cellular Activities) superfamily of ATPases. They are required for thermotolerance and function in disaggregation and reactivation of aggregated proteins that form during severe stress conditions. ClpB and Hsp104 collaborate with the DnaK or Hsp70 chaperone system, respectively, to dissolve protein aggregates both in vivo and in vitro. In yeast, the propagation of prions depends upon Hsp104. Since protein aggregation and amyloid formation are associated with many diseases, including neurodegenerative diseases and cancer, understanding how disaggregases function is important. In this study, we have explored the innate substrate preferences of ClpB and Hsp104 in the absence of the DnaK and Hsp70 chaperone system. The results suggest that substrate specificity is determined by nucleotide binding domain-1.

18.
J Mol Biol ; 341(1): 199-214, 2004 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-15312773

RESUMEN

SecA, a 202 kDa dimeric protein, is the ATPase for the Sec-dependent translocase of precursor proteins in vivo. SecA must undergo conformational changes, which may involve dissociation into a monomer, as it translocates the precursor protein across the inner membrane. To better understand the dynamics of SecA in vivo, protein folding studies to probe the native, intermediate, and unfolded species of SecA in vitro have been done. SecA folds through a stable dimeric intermediate and dimerizes in the dead-time of a manual-mixing kinetic experiment ( approximately 5-7 seconds). Here, stopped-flow fluorescence and CD, as well as ultra-rapid continuous flow fluorescence techniques, were used to further probe the rapid folding kinetics of SecA. In the absence of urea, rapid, near diffusion-limited ( approximately 10(9)M(-1)s(-1)) SecA dimerization occurs following a rate-limiting unimolecular rearrangement of a rapidly formed intermediate. Multiple kinetic folding and unfolding phases were observed and SecA was shown to have multiple native and unfolded states. Using sequential-mixing stopped-flow experiments, SecA was determined to fold via parallel channels with sequential intermediates. These results confirm that SecA is a highly dynamic protein, consistent with the rapid, major conformational changes it must undergo in vivo.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pliegue de Proteína , Adenosina Trifosfatasas/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Dimerización , Cinética , Moduladores del Transporte de Membrana , Proteínas de Transporte de Membrana/antagonistas & inhibidores , Canales de Translocación SEC , Proteína SecA , Factores de Tiempo , Urea/metabolismo
19.
J Mol Biol ; 332(4): 937-51, 2003 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-12972263

RESUMEN

Some amino acid substitutions in phage P22 coat protein cause a temperature-sensitive folding (tsf) phenotype. In vivo, these tsf amino acid substitutions cause coat protein to aggregate and form intracellular inclusion bodies when folded at high temperatures, but at low temperatures the proteins fold properly. Here the effects of tsf amino acid substitutions on folding and unfolding kinetics and the stability of coat protein in vitro have been investigated to determine how the substitutions change the ability of coat protein to fold properly. The equilibrium unfolding transitions of the tsf variants were best fit to a three-state model, N if I if U, where all species concerned were monomeric, a result confirmed by velocity sedimentation analytical ultracentrifugation. The primary effect of the tsf amino acid substitutions on the equilibrium unfolding pathway was to decrease the stability (DeltaG) and the solvent accessibility (m-value) of the N if I transition. The kinetics of folding and unfolding of the tsf coat proteins were investigated using tryptophan fluorescence and circular dichroism (CD) at 222 nm. The tsf amino acid substitutions increased the rate of unfolding by 8-14-fold, with little effect on the rate of folding, when monitored by tryptophan fluorescence. In contrast, when folding or unfolding reactions were monitored by CD, the reactions were too fast to be observed. The tsf coat proteins are natural substrates for the molecular chaperones, GroEL/S. When native tsf coat protein monomers were incubated with GroEL, they bound efficiently, indicating that a folding intermediate was significantly populated even without denaturant. Thus, the tsf coat proteins aggregate in vivo because of an increased propensity to populate this unfolding intermediate.


Asunto(s)
Bacteriófago P22/química , Proteínas de la Cápside/metabolismo , Chaperonina 60/metabolismo , Desnaturalización Proteica , Estructura Terciaria de Proteína , Sustitución de Aminoácidos , Proteínas de la Cápside/química , Humanos , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Termodinámica , Triptófano/química , Urea/química
20.
J Mol Biol ; 427(24): 3877-89, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26482100

RESUMEN

Hsp90 is a highly conserved molecular chaperone that remodels hundreds of client proteins, many involved in the progression of cancer and other diseases. It functions with the Hsp70 chaperone and numerous cochaperones. The bacterial Hsp90 functions with an Hsp70 chaperone, DnaK, but is independent of Hsp90 cochaperones. We explored the collaboration between Escherichia coli Hsp90 and DnaK and found that the two chaperones form a complex that is stabilized by client protein binding. A J-domain protein, CbpA, facilitates assembly of the Hsp90Ec-DnaK-client complex. We identified E. coli Hsp90 mutants defective in DnaK interaction in vivo and show that the purified mutant proteins are defective in physical and functional interaction with DnaK. Understanding how Hsp90 and Hsp70 collaborate in protein remodeling will provide the groundwork for the development of new therapeutic strategies targeting multiple chaperones and cochaperones.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/química , Sustitución de Aminoácidos , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/genética , Unión Proteica , Replegamiento Proteico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA