Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731848

RESUMEN

The pathogenesis of chronic wounds (CW) involves a multifaceted interplay of biochemical, immunological, hematological, and microbiological interactions. Biofilm development is a significant virulence trait which enhances microbial survival and pathogenicity and has various implications on the development and management of CW. Biofilms induce a prolonged suboptimal inflammation in the wound microenvironment, associated with delayed healing. The composition of wound fluid (WF) adds more complexity to the subject, with proven pro-inflammatory properties and an intricate crosstalk among cytokines, chemokines, microRNAs, proteases, growth factors, and ECM components. One approach to achieve information on the mechanisms of disease progression and therapeutic response is the use of multiple high-throughput 'OMIC' modalities (genomic, proteomic, lipidomic, metabolomic assays), facilitating the discovery of potential biomarkers for wound healing, which may represent a breakthrough in this field and a major help in addressing delayed wound healing. In this review article, we aim to summarize the current progress achieved in host-microbiome crosstalk in the spectrum of CW healing and highlight future innovative strategies to boost the host immune response against infections, focusing on the interaction between pathogens and their hosts (for instance, by harnessing microorganisms like probiotics), which may serve as the prospective advancement of vaccines and treatments against infections.


Asunto(s)
Biopelículas , Microbiota , Cicatrización de Heridas , Humanos , Biopelículas/crecimiento & desarrollo , Animales , Enfermedad Crónica , Interacciones Huésped-Patógeno/inmunología
2.
Exp Ther Med ; 24(2): 508, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35837033

RESUMEN

Antimicrobial resistance (AMR) represents a growing public health problem worldwide. Infections with such bacteria lead to longer hospitalization times, higher healthcare costs and greater morbidity and mortality. Thus, there is a greater need for rapid detection methods in order to limit their spread. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) are a series of epidemiologically-important microorganisms of great concern due to their high levels of resistance. This review aimed to update the background information on the ESKAPE pathogens as well as to provide a summary of the numerous phenotypic and molecular methods used to detect their AMR mechanisms. While they are usually linked to hospital acquired infections, AMR is also spreading in the veterinary and the environmental sectors. Yet, the epidemiological loop closes with patients which, when infected with such pathogens, often lack therapeutic options. Thus, it was aimed to give the article a One Health perspective.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA