Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Europace ; 25(2): 726-738, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36260428

RESUMEN

AIMS: The response to high frequency stimulation (HFS) is used to locate putative sites of ganglionated plexuses (GPs), which are implicated in triggering atrial fibrillation (AF). To identify topological and immunohistochemical characteristics of presumed GP sites functionally identified by HFS. METHODS AND RESULTS: Sixty-three atrial sites were tested with HFS in four Langendorff-perfused porcine hearts. A 3.5 mm tip quadripolar ablation catheter was used to stimulate and deliver HFS to the left and right atrial epicardium, within the local atrial refractory period. Tissue samples from sites triggering atrial ectopy/AF (ET) sites and non-ET sites were stained with choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH), for quantification of parasympathetic and sympathetic nerves, respectively. The average cross-sectional area (CSA) of nerves was also calculated. Histomorphometry of six ET sites (9.5%) identified by HFS evoking at least a single atrial ectopic was compared with non-ET sites. All ET sites contained ChAT-immunoreactive (ChAT-IR) and/or TH-immunoreactive nerves (TH-IR). Nerve density was greater in ET sites compared to non-ET sites (nerves/cm2: 162.3 ± 110.9 vs. 69.65 ± 72.48; P = 0.047). Overall, TH-IR nerves had a larger CSA than ChAT-IR nerves (µm2: 11 196 ± 35 141 vs. 2070 ± 5841; P < 0.0001), but in ET sites, TH-IR nerves were smaller than in non-ET sites (µm2: 6021 ± 14 586 vs. 25 254 ± 61 499; P < 0.001). CONCLUSIONS: ET sites identified by HFS contained a higher density of smaller nerves than non-ET sites. The majority of these nerves were within the atrial myocardium. This has important clinical implications for devising an effective therapeutic strategy for targeting autonomic triggers of AF.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Animales , Porcinos , Fibrilación Atrial/cirugía , Atrios Cardíacos , Miocardio , Sistema Nervioso Autónomo , Ablación por Catéter/métodos
2.
Biomed Res Int ; 2015: 626971, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25654117

RESUMEN

This paper presents a computational model which estimates the postsynaptic conductance change of mammalian Type I afferent peripheral process when airborne acoustic waves impact on the tympanic membrane. A model of the human auditory periphery is used to estimate the inner hair cell potential change in response to airborne sound. A generic and tunable topology of the mammalian synaptic ribbon is generated and the voltage dependence of its substructures is used to calculate discrete and probabilistic neurotransmitter vesicle release. Results suggest an almost linear relationship between increasing sound level (in dB SPL) and the postsynaptic conductance for frequencies considered too high for neurons to phase lock with (i.e., a few kHz). Furthermore coordinated vesicle release is shown for up to 300-400 Hz and a mechanism of phase shifting the subharmonic content of a stimulating signal is suggested. Model outputs suggest that strong onset response and highly synchronised multivesicular release rely on compound fusion of ribbon tethered vesicles.


Asunto(s)
Fenómenos Electrofisiológicos , Células Ciliadas Auditivas Internas/fisiología , Modelos Biológicos , Transmisión Sináptica/fisiología , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Humanos , Activación del Canal Iónico , Mamíferos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA