Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(44): e202401340, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38804733

RESUMEN

Polycyclic aromatic hydrocarbons and their nitrogen-substituted analogues are of great interest for various applications in organic electronics. The performance of such devices is determined not only by the properties of the single molecules, but also by the structure of their aggregates, which often form via self-aggregation. Gaining insight into such aggregation processes is a challenging task, but crucial for a fine-tuning of the materials properties. In this work, an efficient approach for the generation and characterisation of aggregates is described, based on matrix-isolation experiments and quantum-chemical calculations. This approach is exemplified for aggregation of acridine. The acridine dimer and trimer are thoroughly analysed on the basis of experimental and calculated UV and IR absorption spectra, which agree well with each other. Thereby a novel structure of the acridine dimer is found, which disagrees with a previously reported one. The calculations also show the changes from excitonic coupling towards orbital interactions between two molecules with decreasing distance to each other. In addition, a structure of the trimer is determined. Finally, an outlook is given on how even higher aggregates can be made accessible through experiment.

2.
Chemistry ; 30(8): e202303336, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37986242

RESUMEN

A π-expanded X-type double [5]helicene comprising dihydropyracylene moieties was synthesized from commercially available acenaphthene. X-ray crystallographic analysis revealed the unique highly twisted structure of the compound resulting in the occurrence of two enantiomers which were separated by chiral HPLC, owing to their high conformational stability. The compound shows strongly bathochromically shifted UV/vis absorption and emission bands with small Stokes shift and considerable photoluminescence quantum yield and circular polarized luminescence response. The electrochemical studies revealed five facilitated reversible redox events, including three reductions and two oxidations, thus qualifying the compound as chiral multistage redox amphoter. The experimental findings are in line with the computational studies based on density functional theory pointing towards increased spatial extension of the frontier molecular orbitals over the polycyclic framework and a considerably narrowed HOMO-LUMO gap.

3.
Phys Chem Chem Phys ; 26(8): 7190-7202, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38349743

RESUMEN

Light-triggered molecular switches are extensively researched for their applications in medicine, chemistry and material science and, if combined, particularly for their use in multifunctional smart materials, for which orthogonally, i.e. individually, addressable photoswitches are needed. In such a multifunctional mixture, the switching properties, efficiencies and the overall performance may be impaired by undesired mutual dependences of the photoswitches on each other. Within this study, we compare the performance of the pure photoswitches, namely an azobenzene derivative (Azo) and a donor-acceptor Stenhouse adduct (DASA), with the switching properties of their mixture using time-resolved temperature-dependent UV/VIS absorption spectroscopy, time-resolved IR absorption spectroscopy at room temperature and quantum mechanical calculations to determine effective cross sections, switching kinetics as well as activation energies of thermally induced steps. We find slightly improved effective cross sections, percentages of switched molecules and no increased activation barriers of the equimolar mixture compared to the single compounds. Thus, the studied mixture Azo + DASA is very promising for future applications in multifunctional smart materials.

4.
J Phys Chem A ; 128(36): 7680-7690, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39213621

RESUMEN

We present a non-Dyson fourth-order algebraic diagrammatic construction formulation of the electron propagator, featuring the distinct IP- and EA-ADC(4) schemes for the treatment of ionization and electron attachment processes. The algebraic expressions have been derived automatically using the intermediate state representation approach and implemented in the Q-Chem quantum-chemical program package. The performance of the novel methods is assessed with respect to high-level reference data for ionization potentials and electron affinities of closed- and open-shell systems. While only minor improvements over the corresponding third-order methods are observed for one-hole ionization and one-particle electron attachment processes from closed-shell systems (MAEIP-ADC(4) = 0.27 eV and MAEEA-ADC(4) = 0.05 eV), a significantly enhanced performance is found in case of open-shell reference states (MAEIP-ADC(4) = 0.11 eV and MAEEA-ADC(4) = 0.02 eV). A particularly appealing feature of the novel methods is their accurate treatment of satellite transitions. For closed-shell reference states, we obtain accuracies of MAEIP-ADC(4) = 0.81 eV and MAEEA-ADC(4) = 0.27 eV, while in case of open-shell reference states, mean absolute errors of MAEIP-ADC(4) = 0.15 eV and MAEEA-ADC(4) = 0.27 eV are found.

5.
J Chem Phys ; 160(20)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38785284

RESUMEN

Quantum Monte Carlo Algebraic Diagrammatic Construction (QMCADC) has been proposed as a reformulation of the second-order ADC scheme for the polarization propagator within the projection quantum Monte Carlo formalism. Dense-sparse partitioning and importance ranking filtering strategies are now exploited to accelerate its convergence and to alleviate the sign problem inherent in such calculations. By splitting the configuration space into dense and sparse subsets, the corresponding projection operator is decomposed into four distinct blocks. Deterministic calculations handle the dense-to-dense and sparse-to-dense blocks, while the remaining blocks, dense-to-sparse and sparse-to-sparse, are stochastically evaluated. The dense set is efficiently stored in a fixed-size array, and the sparse set is represented through conventional floating random Monte Carlo walks. The stochastic projection is further refined through importance ranking criteria, enabling a reduction in the required number of walkers with a controllable bias. Our results demonstrate the integration of dense-sparse partitioning with importance ranking filtering to significantly enhance the efficiency of QMCADC, enabling large-scale molecular excited-state calculations. Furthermore, this novel approach maximizes the utilization of the sparsity of ADC(2), transforming QMCADC into a tailored framework for ADC calculations.

6.
Angew Chem Int Ed Engl ; 63(10): e202314112, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38059778

RESUMEN

Compounds with multiple photoswitching units are appealing for complex photochemical control of molecular materials and nanostructures. Herein, we synthesized novel meta- and para- connected (related to the nitrogen of the indoline) azobenzene-spiropyran dyads, in which the central benzene unit is shared by both switches. We investigated their photochemistry using static and time-resolved transient absorption spectroscopy as well as quantum chemical calculations. In the meta-compound, the individual components are photochemically decoupled due to the meta-pattern. In the para-compound the spiro-connectivity leads to a bifunctional photoswitchable system with a red-shifted absorption. The azobenzene and the spiropyran can thus be addressed and switched independently by light of appropriate wavelength. Through the different connectivity patterns two different orthogonally photoswitchable systems have been obtained which are promising candidates for complex applications of light control.

7.
Angew Chem Int Ed Engl ; : e202406384, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190530

RESUMEN

Non-Kekulé quinoidal azaacences m-A (1a,b) were synthesized and compared to their para- and ortho-quinodimethane analogues. m-Adisplay high diradical characters (1b: y0 = 0.88) due to their meta-quinodimethane (m-QDM) topology. Electron paramagnetic, nuclear magnetic resonance spectroscopies and supraquantum interference device measurements in combination with quantum-chemical calculations revealed singlet ground states for m-A with singlet-triplet gaps ΔEST (0.13-0.25 kcal mol-1) and thermally populated triplet states. These non-Kekulé structures are over all void of zwitterionic character and possess record high two-photon absorption cross sections over a broad spectral range in the near-infrared.

8.
J Am Chem Soc ; 145(27): 14811-14822, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37364887

RESUMEN

The Hula-Twist (HT) photoreaction represents a fundamental photochemical pathway for bond isomerizations and is defined by the coupled motion of a double bond and an adjacent single bond. This photoreaction has been suggested as the defining motion for a plethora of light-responsive chromophores such as retinal within opsins, coumaric acid within photoactive yellow protein, or vitamin D precursors, and stilbenes in solution. However, due to the fleeting character of HT photoproducts a direct experimental observation of this coupled molecular motion was severely hampered until recently. To solve this dilemma, the Dube group has designed a molecular framework able to deliver unambiguous experimental evidence of the HT photoreaction. Using sterically crowded atropisomeric hemithioindigo (HTI) the HT photoproducts are rendered thermally stable and can be observed directly after their formation. However, following the ultrafast excited state process of the HT photoreaction itself has not been achieved so far and thus crucial information for an elementary understanding is still missing. In this work, we present the first ultrafast spectroscopy study of the HT photoreaction in HTI and probe the competition between different excited state processes. Together with extensive excited state calculations a detailed mechanistic picture is developed explaining the significant solvent effects on the HT photoreaction and revealing the intricate interplay between productive isomerizations and unproductive twisted intramolecular charge transfer (TICT) processes. With this study essential insights are thus gained into the mechanism of complex multibond rotations in the excited state, which will be of primary importance for further developments in this field.

9.
J Am Chem Soc ; 145(32): 17965-17974, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37535495

RESUMEN

We investigate intramolecular singlet fission (iSF) of spiro-linked azaacene heterodimers by time-resolved spectroscopy and quantum chemical calculations. Combining two different azaacenes through a nonconjugated linker using condensation chemistry furnishes azaacene heterodimers. Compared to their homodimers, iSF quantum yields are improved at an extended absorption range. The driving force of iSF, the energy difference ΔEiSF between the S1 state and the correlated triplet pair 1(TT), is tuned by the nature of the heterodimers. iSF is exothermic in all of the herein studied molecules. The overall quantum yield for triplet exciton formation reaches approximately 174%. This novel concept exploits large energy differences between singlet electronic states in combination with spatially fixed chromophores, which achieves efficient heterogeneous iSF, if the through-space interaction between the chromophores is minimal.

10.
Chemistry ; 29(72): e202302296, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37860944

RESUMEN

In this work, matrix-isolation spectroscopy and quantum-chemical calculations are used together to analyse the structure and properties of weakly bound dimers of the two isomers benzo[a]acridine and benzo[c]acridine. Our measured experimental electronic absorbance spectra agree with simulated spectra calculated for the equilibrium structures of the dimers in gas-phase, but in contrast, disagree with the simulated spectra calculated for the structures obtained by optimising the experimental solid-state structures. This highlights the sensitivity of the electronic excitations with respect to the dimer structures. The comparison between the solid-state and gas-phase dimers shows how far the intermolecular interactions could change the geometric and electronic structure in a disordered bulk material or at device interfaces, imposing consequences for exciton and charge mobility and other material properties.

11.
Chemistry ; 29(61): e202302323, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37490332

RESUMEN

Four substituted nonacenes were prepared and characterized by UV-vis and EPR spectroscopy and X-ray crystallography. The compounds are the most stable and soluble nonacenes to date - due to six strategically placed triisopropylsilyl(TIPS)-ethynyl groups. They are stable for several weeks in the solid state. In dilute solution their half-life is 5-9 h. Crystal structure analyses of two nonacenes prove their structures. A nonacene derivative was tested in a solution-processed transistor and exhibits ambipolar charge transport (µe =0.007 cm2 /Vs; µh =0.023 cm2 /Vs).

12.
J Org Chem ; 88(5): 2742-2749, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36802620

RESUMEN

We present the reduction of two azaacenes (a benzo-[3,4]cyclobuta[1,2-b]phenazine and a benzo[3,4]cyclobuta[1,2-b]naphtho[2,3-i]phenazine derivative), featuring a single cyclobutadiene unit, to their radical anions and dianions. The reduced species were produced using potassium naphthalenide in the presence of 18-crown-6 in THF. Crystal structures of the reduced representatives were obtained and their optoelectronic properties evaluated. Charging these 4n Hückel systems gives dianionic 4n + 2 π-electron systems with increased antiaromaticity, according to NICS(1.7)zz calculations, featuring unusually red-shifted absorption spectra.

13.
Phys Chem Chem Phys ; 25(26): 17079-17091, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37338889

RESUMEN

N-Heteropolycycles (NHPCs) represent a promising substance class for applications in functional organic materials, since their electronic structure and the resulting individual molecular properties are efficiently tuneable by number and position of nitrogen atoms in the aromatic structural backbone. The isosteric replacement of a C-H unit by N leaves the geometric structure unchanged, while ionization potential, electron affinity and absorption spectra are altered. In this prespective, we present the potent combination of two-photon photoelectron spectroscopy (2PPE) and high-resolution electron energy loss spectroscopy (HREELS) with quantum chemical calculations for the investigation of the electronic structure of NHCPs. In contrast to conventional optical spectroscopies, 2PPE provides insight into electron-detached and attached electronic states of NHCPs, while HREELS delivers the energetic position of the lowest triplet states. Based on our comprehensive investigations, an extension of Platt's famous nomenclature of the low-lying excited ππ* states could be suggested for NHPCs based on the physical properties of the corresponding excitons. Also, the influence of N-introduction onto the occurrence of the so-called α-band in NHPCs compared to the parent polycyclic aromatic hydrocarbons could be explained in detail. While N-substitution of C-H in polycyclic aromatic hydrocarbons (PAHs) is often seen as a simple isosteric replacement, it has a strong influence on the electronic structure and the resulting properties. Therefore rules derived for PAHs can often only be transferred to a limited extent or not at all.

14.
J Phys Chem A ; 127(9): 2161-2175, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36847774

RESUMEN

A multistate formulation of the recently developed quantum Monte Carlo (QMC) algebraic diagrammatic construction (ADC) method, QMCADC, is presented. QMCADC solves the Hermitian eigenvalue problem of the second-order ADC scheme for the polarization propagator stochastically by combining ADC schemes with projector quantum Monte Carlo (PQMC). It allows for massively parallel distributed computing and exploits the sparsity of the effective ADC matrix, thereby relaxing memory and processing requirements of ADC methods significantly. Here, the theory and implementation of the multistate variant of QMCADC are described, and our first proof-of-principle calculations for various molecular systems are shown. Indeed, multistate QMCADC enables sampling of an arbitrary number of low-lying excited states and can reproduce their vertical excitation energies with a marginal controllable error. The performance of multistate QMCADC is examined in terms of state-wise and overall accuracy as well as with respect to the balance in the treatments of excited states relatively to each other. The results are very promising as they show bias and imbalances among excited states to diminish as the number of sampling points increases. Furthermore, the impact of the quality of trial wave functions on the vertical excitation energies is investigated. A black-box approach for the generation of high quality trial wave functions internally is given.

15.
J Phys Chem A ; 127(32): 6635-6646, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37498297

RESUMEN

Algebraic diagrammatic construction (ADC) schemes represent a family of ab initio methods for the calculation of excited electronic states and electron-detached and -attached states. All ADC methods have been demonstrated to possess great potential for molecular applications, e.g., for the calculation of absorption or photoelectron spectra or electron attachment processes. ADC originates from Green's function or propagator theory; however, most recent ADC developments heavily rely on the intermediate state representation or effective Liouvillian formalisms, which comprise new ADC methods and computational schemes for high-order properties. The different approaches for the calculation of excitation energies, ionization potentials, and electron affinities are intimately related, and they provide a coherent description of these quantities at equivalent levels of theory and with comparable errors. Most quantum chemical program packages contain ADC methods; however, the most complete ADC suite of methods can be found in the recent release of Q-Chem.

16.
J Phys Chem A ; 127(41): 8723-8733, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37816160

RESUMEN

The Cotton-Mouton effect is theoretically investigated for a selected set of molecules by using a novel computational methodology based on algebraic diagrammatic construction (ADC) schemes in the intermediate state representation (ISR) formulation. Therefore, the electronic contributions to the frequency-dependent polarizabilities and, for the first time, to the magnetizabilities as well as mixed electric and magnetic hypermagnetizabilities have been computed in the ADC/ISR framework. In addition to calculation of the Cotton-Mouton constant and the birefringence, the gauge origin dependence of the computed tensors and the applied methodology are thoroughly investigated. The new ADC/ISR methodology, employing the recently presented responsefun package, is applied to a test set of Ne and small molecules (H2, HF, O2, CO2, and benzene) and compared to data from the experiment as well as other ab initio methods. The presented theoretical ab initio ADC/ISR approach is a substantial extension of the available computational methods for the investigation of complex nonlinear properties, however, with a gauge origin dependence inherent to the method that decreases with increasing perturbation order.

17.
J Chem Phys ; 158(12): 124128, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37003729

RESUMEN

Quantum chemical methods for the description of molecular polaritonic states in the strong coupling regime based on the Pauli-Fierz Hamiltonian are introduced. Based on a quantum electrodynamic Hartree-Fock (QED-HF) reference, a QED Møller-Plesset perturbation theory of second order for the electronic ground state and a second order quantum electrodynamic algebraic diagrammatic construction scheme for the polarization propagator [QED-ADC(2)] for excited electronic states have been derived, implemented, and tested for polaritons in hydrogen fluoride. Analogous approaches based on a standard non-polaritonic HF reference are also presented and thoroughly compared, both algebraically and numerically, to those based on the QED-HF reference. Furthermore, a promising route to approximate QED-ADC methods based on a unitary transformation of the algebraic expression into a restricted state space is outlined showing excellent agreement in second order with QED-ADC(2). All presented novel methods are compared to and tested against other existing ab initio approaches, mostly QED coupled cluster theory, including single and double excitations, and show qualitative agreement at a reduced computational effort.

18.
J Chem Phys ; 159(13)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37787133

RESUMEN

In this paper we present the Markovian Multiagent Monte-Carlo Second Order Self-Consistent Field Algorithm (M3-SOSCF). This algorithm provides a highly reliable methodology for converging SCF calculations in single-reference methods using a modified differential evolution approach. Additionally, M3 is embarrassingly parallel and modular in regards to Newton-Raphson subroutines. We show that M3 is able to surpass contemporary SOSCFs in reliability, which is illustrated by a benchmark employing poor initial guesses and a second benchmark with SCF calculations which face difficulties using standard SCF algorithms. Furthermore, we analyse inherent properties of M3 and show that in addition to its robustness and efficiency, it is more user-friendly than current SOSCFs.

19.
J Chem Phys ; 159(1)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37403856

RESUMEN

The intermediate state representation (ISR) formalism allows for the straightforward calculation of excited state properties and state-to-state transition moments using the algebraic-diagrammatic construction (ADC) scheme for the polarization propagator. Here, the derivation and implementation of the ISR in third-order perturbation theory for the one-particle operator are presented, enabling, for the first time, the calculation of consistent third-order ADC [ADC(3)] properties. The accuracy of ADC(3) properties is evaluated with respect to high-level reference data and compared to the previously used ADC(2) and ADC(3/2) schemes. Oscillator strengths and excited state dipole moments are computed, and typical response properties are considered: dipole polarizabilities, first-order hyperpolarizabilities, and two-photon absorption strengths. The consistent third-order treatment of the ISR leads to an accuracy similar to that of the mixed-order ADC(3/2) method; the individual performance, however, depends on the property and molecule under investigation. ADC(3) produces slightly improved results in the case of oscillator strengths and two-photon absorption strengths, while excited state dipole moments, dipole polarizabilities, and first-order hyperpolarizabilities exhibit similar accuracy at ADC(3) and ADC(3/2) levels. Taking the significant increase of central processing unit time and memory requirements of the consistent ADC(3) approach into account, the mixed-order ADC(3/2) scheme offers a better compromise between accuracy and efficiency for the properties considered.

20.
J Chem Phys ; 158(8): 084105, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36859074

RESUMEN

We present an implementation for the calculation of molecular response properties using the algebraic-diagrammatic construction (ADC)/intermediate state representation approach. For the second-order ADC model [ADC(2)], a memory-efficient ansatz avoiding the storage of double excitation amplitudes is investigated. We compare the performance of different numerical algorithms for the solution of the underlying response equations for ADC(2) and show that our approach also strongly improves the convergence behavior for the investigated algorithms compared with the standard implementation. All routines are implemented in an open-source Python library.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA