Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genome Res ; 32(4): 710-725, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35264449

RESUMEN

The unicellular ciliate Paramecium contains a large vegetative macronucleus with several unusual characteristics, including an extremely high coding density and high polyploidy. As macronculear chromatin is devoid of heterochromatin, our study characterizes the functional epigenomic organization necessary for gene regulation and proper Pol II activity. Histone marks (H3K4me3, H3K9ac, H3K27me3) reveal no narrow peaks but broad domains along gene bodies, whereas intergenic regions are devoid of nucleosomes. Our data implicate H3K4me3 levels inside ORFs to be the main factor associated with gene expression, and H3K27me3 appears in association with H3K4me3 in plastic genes. Silent and lowly expressed genes show low nucleosome occupancy, suggesting that gene inactivation does not involve increased nucleosome occupancy and chromatin condensation. Because of a high occupancy of Pol II along highly expressed ORFs, transcriptional elongation appears to be quite different from that of other species. This is supported by missing heptameric repeats in the C-terminal domain of Pol II and a divergent elongation system. Our data imply that unoccupied DNA is the default state, whereas gene activation requires nucleosome recruitment together with broad domains of H3K4me3. In summary, gene activation and silencing in Paramecium run counter to the current understanding of chromatin biology.


Asunto(s)
Histonas , Paramecium , Cromatina/genética , Código de Histonas , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Paramecium/genética , Paramecium/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
2.
J Eukaryot Microbiol ; 69(5): e12914, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35363910

RESUMEN

The term epigenetics is used for any layer of genetic information aside from the DNA base-sequence information. Mammalian epigenetic research increased our understanding of chromatin dynamics in terms of cytosine methylation and histone modification during differentiation, aging, and disease. Instead, ciliate epigenetics focused more on small RNA-mediated effects. On the one hand, these do concern the transport of RNA from parental to daughter nuclei, representing a regulated transfer of epigenetic information across generations. On the other hand, studies of Paramecium, Tetrahymena, Oxytricha, and Stylonychia revealed an almost unique function of transgenerational RNA. Rather than solely controlling chromatin dynamics, they control sexual progeny's DNA content quantitatively and qualitatively. Thus epigenetics seems to control genetics, at least genetics of the vegetative macronucleus. This combination offers ciliates, in particular, an epigenetically controlled genetic variability. This review summarizes the epigenetic mechanisms that contribute to macronuclear heterogeneity and relates these to nuclear dimorphism. This system's adaptive and evolutionary possibilities raise the critical question of whether such a system is limited to unicellular organisms or binuclear cells. We discuss here the relevance of ciliate genetics and epigenetics to multicellular organisms.


Asunto(s)
Cilióforos , Paramecium , Animales , Proliferación Celular , Cromatina , Cilióforos/genética , ADN , Epigénesis Genética , Genoma de Protozoos , Mamíferos , Paramecium/genética , ARN
3.
J Exp Bot ; 72(20): 6867-6881, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34244747

RESUMEN

The plant vacuole recycles proteins and RNA delivered to it by autophagy. In this study, by isolating intact vacuoles from Arabidopsis plants, followed by subsequent RNA purification, and deep sequencing, we provide a comprehensive characterization of Arabidopsis vacuolar RNAome. In the vacuolar RNAome, we detected ribosomal RNAs, transfer RNAs, including those of chloroplast origin, and in addition small RNA types. As autophagy is a main mechanism for the transport of RNA to the vacuole, atg5-1 mutants deficient in autophagy were included in our analysis. We observed severely reduced amounts of most chloroplast-derived RNA species in these mutants. Comparisons with cellular RNA composition provided an indication of possible up-regulation of alternative RNA breakdown pathways. By contrast, vacuolar RNA processing and composition in plants lacking vacuolar ribonuclease 2, involved in cellular RNA homeostasis, only showed minor alterations, possibly because of the presence of further so far unknown vacuolar RNase species. Among the small RNA types, we detected mature miRNAs in all vacuolar preparations but at much lower frequency in atg5-1, raising the possibility of a biological role for vacuolar miRNAs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Autofagia/genética , ARN , Vacuolas
4.
RNA Biol ; 18(sup2): 757-769, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34663180

RESUMEN

Most sRNA biogenesis mechanisms involve either RNAse III cleavage or ping-pong amplification by different Piwi proteins harbouring slicer activity. Here, we follow the question why the mechanism of transgene-induced silencing in the ciliate Paramecium needs both Dicer activity and two Ptiwi proteins. This pathway involves primary siRNAs produced from non-translatable transgenes and secondary siRNAs from targeted endogenous loci. Our data does not indicate any signatures from ping-pong amplification but Dicer cleavage of long dsRNA. Ptiwi13 and 14 prefer different sub-cellular localizations and different preferences for primary and secondary siRNAs but do not load them mutually exclusive. Both Piwis enrich for antisense RNAs and show a general preference for uridine-rich sRNAs along the entire sRNA length. In addition, Ptiwi14-loaded siRNAs show a 5´-U signature. Our data indicates both Ptiwis and 2´-O-methylation contributing to strand selection of Dicer cleaved siRNAs. This unexpected function of the two distinct vegetative Piwis extends the increasing knowledge of the diversity of Piwi functions in diverse silencing pathways. We describe an unusual mode of action of Piwi proteins extending not only the great variety of Piwi-associated RNAi pathways but moreover raising the question whether this could have been the primordial one.


Asunto(s)
Proteínas Argonautas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Silenciador del Gen , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Paramecium tetraurelia , Unión Proteica , Proteínas Protozoarias/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Ribonucleasa III/metabolismo , Transgenes
5.
Nucleic Acids Res ; 47(15): 8036-8049, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31251800

RESUMEN

Extensive research has characterized distinct exogenous RNAi pathways interfering in gene expression during vegetative growth of the unicellular model ciliate Paramecium. However, role of RNAi in endogenous transcriptome regulation, and environmental adaptation is unknown. Here, we describe the first genome-wide profiling of endogenous sRNAs in context of different transcriptomic states (serotypes). We developed a pipeline to identify, and characterize 2602 siRNA producing clusters (SRCs). Our data show no evidence that SRCs produce miRNAs, and in contrast to other species, no preference for strand specificity of siRNAs. Interestingly, most SRCs overlap coding genes and a separate group show siRNA phasing along the entire open reading frame, suggesting that the mRNA transcript serves as a source for siRNAs. Integrative analysis of siRNA abundance and gene expression levels revealed surprisingly that mRNA and siRNA show negative as well as positive associations. Two RNA-dependent RNA Polymerase mutants, RDR1 and RDR2, show a drastic loss of siRNAs especially in phased SRCs accompanied with increased mRNA levels. Importantly, most SRCs depend on both RDRs, reminiscent to primary siRNAs in the RNAi against exogenous RNA, indicating mechanistic overlaps between exogenous and endogenous RNAi contributing to flexible transcriptome adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Paramecium/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Transcriptoma , Perfilación de la Expresión Génica , Ontología de Genes , Genoma de Protozoos/genética , MicroARNs/genética , ARN Mensajero/genética
6.
Clin Chem ; 65(12): 1581-1591, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31645340

RESUMEN

BACKGROUND: Small RNAs are key players in the regulation of gene expression and differentiation. However, many different classes of small RNAs (sRNAs) have been described with distinct biogenesis pathways and, as a result, with different biochemical properties. To analyze sRNAs by deep sequencing, complementary DNA synthesis requires manipulation of the RNA molecule itself. Thus, enzymatic activities during library preparation bias the library content owing to biochemical criteria. METHODS: We compared 4 different manipulations of RNA for library preparation: (a) a ligation-based procedure allowing only 5'-mono-phosphorylated RNA to enter the library, (b) a ligation-based procedure allowing additional 5'-triphosphates and Cap structures, (c) a ligation-independent, template-switch-based library preparation, and (d) a template-switch-based library preparation allowing 3'-phosphorylated RNAs to enter the library. RESULTS: Our data show large differences between ligation-dependent and ligation-independent libraries in terms of their preference for individual sRNA classes such as microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), and transfer RNA fragments. Moreover, the miRNA composition is different between both procedures, and more microRNA isoforms (isomiRs) can be identified after pyrophosphatase treatment. piRNAs are enriched in template-switch libraries, and this procedure apparently includes more different RNA species. CONCLUSIONS: Our data indicate that miRNAomics from both methods will hardly be comparable. Ligation-based libraries enrich for canonical miRNAs, which thus may be suitable methods for miRNAomics. Template-switch libraries contain increased numbers and different compositions of fragments and long RNAs. Following different interests for other small RNA species, ligation-independent libraries appear to show a more realistic sRNA landscape with lower bias against biochemical modifications.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , Sesgo , ADN Complementario , Biblioteca de Genes , Biblioteca Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs , ARN Interferente Pequeño , ARN de Transferencia , Análisis de Secuencia de ARN/métodos
7.
Chemosphere ; 345: 140434, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865207

RESUMEN

Cobalt (Co) and Nickel (Ni) are increasingly found in our environment. We analysed their combined toxicity and uptake mechanisms in the early food chain by studying bacteria and the bacterivorous ciliate Paramecium as a primary consumer. We exposed both species to these metals to measure the toxicity, uptake and transfer of metals from bacteria to Paramecium. We found that Ni is more toxic than Co, and that toxicity increases for both metals when (i) food bacteria are absent and (ii) both metals are applied in combination. The cellular content in bacteria after exposure shows a concentration dependent bias for either Ni or Co. Comparing single treatment and joint exposure, bacteria show increased levels of both metals when these are both exposed. To imitate the basic level of the food chain, we fed these bacteria to paramecia. The cellular content shows a similar ratio of Nickel and Cobalt as in food bacteria. This is different to the direct application of both metals to paramecia, where Cobalt is enriched over Nickel. This indicates that bacteria can selectively pre-accumulate metals for introduction into the food chain. We also analysed the transcriptomic response of Paramecium to sublethal doses of Nickel and Cobalt to gain insight into their toxicity mechanisms. Gene ontology (GO) analysis indicates common deregulated pathways, such as ammonium transmembrane transport and ubiquitine-associated protein degradation. Many redox-related genes also show deregulation of gene expression, indicating cellular adaptation to increased RONS stress. This suggests that both metals may also target the same cellular pathways and this is consistent with the increased toxicity of both metals when used together. Our data reveal complex ecotoxicological pathways for these metals and highlights the different parameters for their fate in the ecosystem, in the food chain and their ecotoxicological risk after environmental contamination.


Asunto(s)
Níquel , Paramecium , Níquel/análisis , Cobalto/análisis , Ecosistema , Paramecium/metabolismo , Metales , Bacterias/metabolismo
8.
Eur J Pharm Biopharm ; 158: 284-293, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33285246

RESUMEN

The delivery of oligonucleotides such as siRNA to the lung is a major challenge, as this group of drugs has difficulties to overcome biological barriers due to its polyanionic character and the associated hydrophilic properties, resulting in inefficient delivery. Especially in diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis, where increased proinflammation is present, a targeted RNA therapy is desirable due to the high potency of these oligonucleotides. To address these problems and to ensure efficient uptake of siRNA in macrophages, a microparticulate, cylindrical delivery system was developed. In the first step, this particle system was tested for its aerodynamic characteristics to evaluate the aerodynamic properties to optimize lung deposition. The mass median aerodynamic diameter of 2.52 ± 0.23 µm, indicates that the desired target should be reached. The inhibition of TNF-α release, as one of the main mediators of proinflammatory reactions, was investigated. We could show that our carrier system can be loaded with siRNA against TNF-α. Gel electrophoreses allowed to demonstrate that the load can be incorporated and released without being degraded. The delivery system was found to transport a mass fraction of 0.371% [%w/w] as determined by inductively coupled plasma mass spectroscopy. When investigating the release kinetics, the results showed that several days are necessary to release a major amount of the siRNA indicating a sustained release. The cylindrical microparticles with an aspect ratio of 3.3 (ratio of length divided by width) were then tested in vitro successfully reducing TNF-α release from human macrophages significantly by more than 30%. The developed formulation presents a possible oligonucleotide delivery system allowing due to its internal structure to load and protect siRNA.


Asunto(s)
Portadores de Fármacos/química , Macrófagos/metabolismo , ARN Interferente Pequeño/administración & dosificación , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Administración por Inhalación , Asma/tratamiento farmacológico , Fibrosis Quística/tratamiento farmacológico , Composición de Medicamentos/métodos , Liberación de Fármacos , Humanos , Microesferas , Terapia Molecular Dirigida/métodos , Tamaño de la Partícula , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , ARN Interferente Pequeño/farmacocinética , Células THP-1
9.
Mitochondrial DNA B Resour ; 6(8): 2281-2284, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34291161

RESUMEN

Berghia stephanieae (Nudibranchia, Cladobranchia) is a photosymbiotic sea slug that feeds exclusively on sea anemones from the genus Exaiptasia. It then specifically incorporates dinoflagellates belonging to the Symbiodiniaceae obtained from their prey. Here, we present the complete mitochondrial genome sequence of B. stephanieae combining Oxford Nanopore long read and Illumina short-read sequencing data. The mitochondrial genome has a total length of 14,786 bp, it contains the 13 protein-encoding genes, 23 tRNAs, and two rRNAs and is similar to other nudibranchs except for the presence of a duplicated tRNA-Ser 1.

10.
DNA Res ; 27(1)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32339224

RESUMEN

Supply of exogenous dsRNA (exo-dsRNA), either by injection or by feeding, is a fast and powerful alternative to classical knockout studies. The biotechnical potential of feeding techniques is evident from the numerous studies focusing on oral administration of dsRNA to control pests and viral infection in crops/animal farming. We aimed to dissect the direct and indirect effects of exo-dsRNA feeding on the endogenous short interfering RNA (endo-siRNA) populations of the free-living ciliate Paramecium. We introduced dsRNA fragments against Dicer1 (DCR1), involved in RNA interference (RNAi) against exo- and few endo-siRNAs, and an RNAi unrelated gene, ND169. Any feeding, even the control dsRNA, diminishes genome wide the accumulation of endo-siRNAs and mRNAs. This cannot be explained by direct off-target effects and suggests mechanistic overlaps of the exo- and endo-RNAi mechanisms. Nevertheless, we observe a stronger down-regulation of mRNAs in DCR1 feeding compared with ND169 knockdown. This is likely due to the direct involvement of DCR1 in endo-siRNA accumulation. We further observed a cis-regulatory effect on mRNAs that overlap with phased endo-siRNAs. This interference of exo-dsRNA with endo-siRNAs warrants further investigations into secondary effects in target species/consumers, risk assessment of dsRNA feeding applications, and environmental pollution with dsRNA.


Asunto(s)
Paramecium/genética , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Mensajero/metabolismo , Ribonucleasa III/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA